THIRD SEMESTER CIVIL ENGINEERING CORE COURSES

Code	Course Name	Credits	LTP
22CET201	Advanced Surveying	2	200
22CET202	Building Technology	2	200
22CET203	Construction Materials	3	300
22CET204	Fluid Mechanics	4	310
22CET205	Introduction to Satellite Based Positioning	2	200
22CET206	Structural Analysis		3 1 0
22CEP207	Advanced Surveying & GNSS Lab	1	002
22CEP208	Building Drawing - I	1	002
22CEP209	Construction Materials Lab	1	002
22CEP210	Fluid Mechanics Lab	1	002
22CEP211	Structural Analysis Lab	1	002

UG/PG: UG	Department: Civil Engineering
Course Code: 22CET201	Course Name: Advanced Surveying
Credit: 2	L-T-P: 2-0-0
Pre-requisite Course: 22CET103 Surveying	

rie-lequisite Course. 220L 1 103 Surve

Syllabus

Theory of errors; Adjustment of surveying observations; Triangulation and Trilateration; Various triangulation schemes; Type of triangulations; Triangulation measurements; Adjustment of triangulation scheme; Principles of photogrammetry; Aerial photography, Interpretation, Measurements from aerial photographs; Introduction to astronomy; Terms of reference planes and astronomical coordinates; Astronomical triangle / shortest distance determination; Time in astronomy; Uses of Total Station and other Advance surveying instruments.

Course Outcomes

- 1. Be able to plan and execute triangulation surveying schemes and survey.
- 2. Be able to make measurements on satellite images and aerial photographs using photogrammetric concepts
- 3. Be able to employ advance surveying equipment for preparation of maps, determination of positions.
- 4. Be able to measure time and other astronomical observations

Text Books

- 1. Wolf, P. R., A text book on Photogrammetry, 4th edition, 2012.
- 2. C.D. Burnside, Electromagnetic Distance Measurement, Crosby Lockwood and Son Ltd., London.
- 3. Punmia, B.C., Surveying Vol. II & III, 2005.

Reference Books

- 1. Kavanagh, B., Surveying Principles and Applications, Seventh Edition, Prentice Hall, 8th edition, 2008.
- 2. G.L. Hosmer, Geodesy, John Wiley & Sons, New York, 1946.

UG/PG: UG	Department: Civil Engineering
Course Code: 22CET202	Course Name: Building Technology
Credit: 2	L-T-P: 2-0-0
Pro requisito Courses	

Pre-requisite Course:

Syllabus

Classification of Buildings, low-rise and high-rise buildings, load bearing and framed construction; Building planning, building planning concepts, and Introduction to National building codes and byelaws; Concepts of various foundation types, foundation of walls, columns etc., foundation layout, foundation construction practices and failure issues; Stone and brick masonry construction, reinforced brick construction, lintel and arches; Roof construction and roofing materials, flat and pitched roofs, drainage of roofs, green roof concepts; Doors and windows Stairs and ramps, Lifts and Escalators, floors and floor finishes, wall finish; Thermal insulation, damp and fire proofing, Expansion and construction joints; Temporary supporting structures concepts for construction of buildings; Advances in building construction practices, prefabrication and precasting, modular construction.

Course Outcomes

- 1. Be able to apply the practical knowledge about manufacturing of concrete and other construction practices.
- 2. Be able to Visualize and imagine buildings as objects through drawings.
- 3. Be able to Monitor and execute construction activities in building projects.
- 4. Select suitable equipment for construction as per site conditions.

Text Books

- 1. Handbook of Building Construction Vol 1, M M Goyal, 2010, Jain Book Depot.
- 2. Brick and Reinforced Brick Structures Dayaratnam P, Oxford & IBH.

- 1. National Building Code of India, BIS, Delhi.
- 2. Building Construction Handbook, R Chudley and Roger Greeno, 2013

UG/PG: UG	Department: Civil Engineering
Course Code: 22CET203	Course Name: Construction Materials
Credit: 3	L-T-P: 3-0-0
Due no mainite Common	

Pre-requisite Course:

Syllabus

Stones- classification, natural bed, tests and preservation of stones; Bricks- raw materials, drying- burning, strength and durability, mortar for masonry, tiles; Timber- classification, seasoning, application, defects in timbers; Cement chemical composition, manufacturing, hydration, properties of cement compounds, types of cement; Concrete- proportioning, transportation and placing, sampling and acceptance for quality control, fresh concrete: batching, mixing, workability, effect of admixture, influence of aggregate on properties of concrete, hardened concrete: mechanical properties, corrosion, chloride and sulphate attack, water-cement ratio, porosity, curing of concrete, concrete mix design; Steel- types, properties, structural steel selection; Green materials concept of being green, concrete vs steel vs timber, low e- glasses, high reflectance material, concepts of reduce-reuse and recycle in construction; Advanced materials: newer and improved materials for construction, steel having greater ductility, tensile strength and corrosion resistance, high performance concrete, self-compacting concrete, chemicals, epoxies, latexes and bonding agents for repairs, geo-textiles and geo-membranes; Materials properties for automated concrete construction, Material for low cost buildings.

Course Outcomes

- 1. Be able to demonstrate knowledge of construction materials and their usages in building projects.
- 2. Be able to apply learning to further research in advancement of civil engineering materials field.
- 3. Understand characteristics of conventional building materials like stone, brick, wood etc.
- 4. Learn about new and composite materials and their value adding characteristic of being lightweight, energy efficient, speedy construction among others.

Text Books and References

- 1. Engineering Materials, Rangwala SC
- 2. Handbook of Concrete Mixes SP23, BIS Delhi
- 3. Concrete technology by A. M. Neville, Pearson education India
- 4. Concrete Technology by M.S. Shetty, S. Chand Itd. India
- 5. Sustainable Construction: Green Building Design and Delivery by C. Kibert, Wiley
- 6. National Building Code of India, BIS, Delhi.
- 7. Repair and Rehabilitation of RCC buildings CPWD, Delhi

UG/PG: UG	Department: Civil Engineering
Course Code: 22CET204	Course Name: Fluid Mechanics
Credit: 4	L-T-P: 3-1-0
Pro requisito Course:	

Pre-requisite Course:

Syllabus

Properties of Fluids, Newtonian and non-Newtonian fluids, Properties of Fluids continued, Examples/Numerical Problems, Fluid Statics-Introduction and Pressure Measurement, Fluid Statics-Hydrostatic Forces on submerged surfaces, Fluid Statics Buoyancy and Floatation, Problems on Fluid Statics, Flow-Classifications, terminologies, concepts, Flow-Classifications, terminologies, concepts (Contd.), Forces on a Fluid particle and Development of various equations including N.S. equations, Continuity Equation, Energy Equation, Momentum Equation, Problems of Kinematics of Fluid flow, Problems on Continuity equation/ Energy equation/ Momentum equations, Flow Measurements in Pipes, Flow Measurements in Open Channels, Problems on Flow Measurements, Major and Minor Losses in pipe flow/ Darcy Weisbach equation, Hydraulic Gradient, TEL etc., Analysis Pipe network and simple problems, Notches & Weirs, Orifices & Mouth pieces, Flow through nozzles & Jets, and problems, Dimensional Analysis – Introduction, Dimensional Analysis-Rayleigh's Method, Dimensional Analysis-Buckingham's PI Method, Similitude, Problems on Dimensions Analysis & Similitude, Flow Classification in pipes: Laminar Flow, turbulent flow & Brief Introduction to Boundary Layer Theory, Flow between parallel plates (Plain Poiseuelle Flow / Couette Flow), Laminar Flow Contd. (Hagen-Poiseuelle Flow), Open Channel Flow, Manning's Formula/ Chezy's formula and basics terminology, Most efficient prismatic channel sections, Open Channel Flow Problems, Review of Course/ Problems.

Course Outcomes

- 1. Be able to explain the basic properties and characteristics of incompressible fluid.
- 2. Be able to illustrate the basic fundamental theorems governing fluid flows i.e., continuity, energy and momentum.
- 3. Be able to analyze and evaluate fluid mechanics based problems based upon the measurement of different fluid properties using various type of equipment.
- 4. Be able to analyze the flow phenomenon through pipes and other systems.

Text Books

- 1. Fluid Mechanics by Streeter, Wylie and Bedford.
- 2. Principals of Fluid Mechanics by M.K. Natarajan.
- 3. Fluid Mechanics Thorough Problems by R.J. Garde
- 4. Fluid Mechanics and Fluid Power Engineering by D.S. Kumar
- 5. Fluid Mechanics by A.K. Jain.

UG/PG: UG	Department: Civil Engineering
Course Code: 22CET205	Course Name: Introduction to Satellite Based Positioning
Credit: 2	L-T-P: 2-0-0
Pre-requisite Course:	

Syllabus

Introduction; Signal structure; Satellite search; Basic GNSS measurements; Atmospheric effects and dual frequency measurements; Carrier phase positioning; Coordinate systems and time; Orbits and data message; Navigation solutions and its applications.

Course Outcomes

- 1. Be able to apply the methods of satellite data for positioning and surveying.
- 2. Understand how a complete navigation system works.
- 3. Understand the specific architecture of operational GNSS and WAAS systems.
- 4. Be able to illustrate the use of GNSS systems for the positioning, mapping and surveying.

Text Books

1. Global Positioning System: Signals, Measurements & Performance, Misra, 2e

UG/PG: UG	Department: Civil Engineering
Course Code: 22CET206	Course Name: Structural Analysis
Credit: 4	L-T-P: 3-1-0
D 114 0 000FT40014 1 1 (0.111	

Pre-requisite Course: 22CET106 Mechanics of Solids

Syllabus

General Concept of Static Equilibrium of Structures, Concept of Free Body Diagram, Slopes and deflections in determinate beams using conjugate beam method and moment area method; Generalized coordinate system; Principles of real and virtual work; Maxwell's reciprocal theorem; Betti's theorem; Castigliano's theorems; Method of Superposition; Strain energy expressions; Strain energy method and virtual work (unit load) method for slopes and deflections in statically determinate frames and trusses; Static indeterminacy and released structure; Force method-method of consistent deformation for analysis of statically indeterminate beams, frames and trusses; Slope deflection and moment deflection method; Three moment theorem; Column analogy method; Analysis of Arches and cable structures; Moving loads and influence lines; Application to statically determinate structures; Muller Breslau's principle.

Course Outcomes

- 1. To determine the static and kinematic indeterminacy of beam, truss and frame.
- 2. To analyze the deflections in determinate and indeterminate structures using various methods.
- 3. To analyze the beams under moving load and to draw influenced line diagram.
- 4. To evaluate the behavior of cable and arches under various loading systems.

Text Books

- 1. R. C. Hibbeler, "Structural Analysis", Pearson Press.
- 2. C. S. Reddy, "Basic Structural Analysis (10/e)", Tata McGraw Hill.
- 3. T.S. Thandavamoorthy, "Structural Analysis", Oxford publications.

- 1. S. P. Timoshenko and D. H. Young, "Theory of structures", McGraw Hill Education.
- 2. C. K. Wang, "Intermediate Structural Analysis", McGraw Hill

UG/PG: UG		Department: Civil Engineering
Course Code: 22CEP207		Course Name: Advanced Surveying & GNSS Lab
Credit	: 1	L-T-P: 0-0-2
Pre-re	quisite Course:	
		LIST OF EXPERIMENTS
Lab #	Name of the Exper	iment
1	To determine Tach distance	heometric constants, horizonal distance and vertical
2	Observations on Ste	ereo-pair of photographs
3	Temporary adjustment of Total station and Angle, Distance and Coordinate measurement	
4	Establishment of Ho	orizontal control point by Traversing using Total station
5	To determine the instrument station, coordinate by Resection method (Angles only and Distances only)	
6	Preparation of Conto	our map using Total Station
7	Setting out: by Coo using Total station	rdinates, by Distance and angle, Points at equal length
8	Navigation and Feasurveying mode	ature collection using handheld GPS in mapping and
9	GNSS Planning and	I traversing
10	differential GNSS su	Ground Control Point using Static / Rapid Static urvey by Lee Frog Method
11	differential GNSS su	Ground Control Point using Static / Rapid Static urvey by Trilateration method
12	Preparation of Plani method	metric map using Post Processed Kinematic (PPK)

- 1. Be able to take precise measurements and capture accurate spatial data with Total Station.
- 2. Be able to take precise measurements and capture accurate spatial data with GNSS
- 3. Be able to compare the results between Total Station and GNSS.

- 1. Global Positioning System: Signals, Measurements & Performance, Misra, 2e
- 2. Understanding GPS/GNSS: Principles and Applications, Elliott and Christopher, Artech House

UG/PG: UG		Department: Civil Engineering
Course Code: 22CEP208		Course Name: Building Drawing – I
Credit	:: 1	L-T-P: 0-0-2
Pre-re	quisite Course:	
		LIST OF EXPERIMENTS
Lab #	Name of the Exper	iment
1	Plan of a single stor	ey house
2	Elevation of a single storey house	
3	Section of a single storey house	
4	Plan of an apartment building	
5	Elevation of an apartment building	
6	Section of an apartment building	
7	Plan of an hospital building	
8	Elevation of an hosp	ital building
9	Section of an hospit	al building
10	M/E Drawing of a building	
11	Plumbing Drawing of a building	

- 1. Understand the basic concepts of building drawings.
- 2. Be able to illustrate the basic steps of building construction and their components.
- 3. Be able to produce different type of drawings required for construction of buildings.

- 1. Time Saver Standards.
- 2. Neuferts Architects Data
- 3. Building Planning and Drawings by Shah, Kale and Patki
- 4. NBC -2005

UG/PG: UG		Department: Civil Engineering
Course Code: 22CEP209		Course Name: Construction Materials Laboratory
Credit	:: 1	L-T-P: 0-0-2
Pre-re	Pre-requisite Course:	
		LIST OF EXPERIMENTS
Lab #	Name of the Exper	iment
1	To determine finene	ess, specific gravity and consistency of cement
2	To determine setting	g times, and comp strength of cement
3	To determine Speci	fic gravity and Sieve Analysis and fineness modulus, and
5	water absorption of sand and aggregates	
	To determine aggre	gate crushing value and aggregate impact value
4	To determine silt co	ntent and bulking of sand
5	To determine slump	, compaction factor, flow of concrete/mortar mix
6	To determine comp	ression and flexural/split strength of concrete
7	To develop mix and	cast bricks/pavers in lab
8	To Test compressiv	e strength of bricks/pavers
9	To determine water	absorption, efflorescence of bricks
10	To determine abras	ion/ skid resistance of blocks
11	To develop stress-s	train curve of Steel
12	Demonstration of St	ustainable/Eco-friendly/recycled material

- 1. Able to identify different type of construction materials.
- 2. Able to measure different engineering properties of building materials like strength, water absorption, abrasion impact etc.
- 3. Able to analyze and choose different type of suitable material for construction projects.

- 1. Relevant IS codes, BIS, Delhi
- 2. SP 23 Handbook of concrete mix design, BIS, Delhi.

UG/PG: UG		Department: Civil Engineering
Course Code: 22CEP210		Course Name: Fluid Mechanics Laboratory
Credit	: 1	L-T-P: 0-0-2
Pre-re	quisite Course:	
		LIST OF EXPERIMENTS
Lab #	Name of the Exper	iment
1	Experiments for Hyd	Irostatics principles on a fluid.
2	Experiments on pres	ssure measurement.
3	Experiments to study the flow through a variable area duct and verification of Bernoulli's energy equation.	
4	Experiments for determination of coefficient of velocity & discharge for a Mouthpiece.	
5	Experiments for determination of coefficient of velocity & discharge for an Orifice.	
6	Experiments to determine the discharge coefficient for a V and rectangular notch.	
7	Experiments on Flowmeter to determine the coefficient of discharge and coefficient of discharge for an obstruction flow meter namely orifice meter.	
8	Experiments on Flowmeter to determine the velocity distribution for pipeline flow with a pitot static probe.	
9	Experiments to determine coefficient of discharge for an obstruction flow meter e.g. venturi meter.	
10	Experiments to dete of different materials	rmine the friction coefficients and head losses for pipes and diameters.
11	· -	rmine the head loss (minor losses) in a pipe line due to sudden contraction/ elbows/ fittings / bend.

- 1. Be able to demonstrate the basic properties and characteristics of incompressible fluid in laboratory.
- 2. Be able to illustrate the fundamental theorems governing fluid flows i.e., continuity, energy and momentum in laboratory.
- 3. Be able to measure different fluid properties using various type of equipment like measurement of flow, pressure velocity and head loss.

- 1. Fluid Mechanics by Streeter, Wylie and Bedford.
- 2. Principals of Fluid Mechanics by M.K. Natarajan.
- 3. Fluid Mechanics Thorough Problems by R.J. Garde
- 4. Fluid Mechanics and Fluid Power Engineering by D.S. Kumar
- 5. Fluid Mechanics by A.K. Jain

UG/PG: UG		Department: Civil Engineering
Course Code: 22CEP211		Course Name: Structural Analysis Laboratory
Credit	: 1	L-T-P: 0-0-2
Pre-re	quisite Course:	
		LIST OF EXPERIMENTS
Lab #	Name of the Exper	iment
1	To verify the reactio	ns in a simply supported beam.
2	To measure deflecti	ons under unsymmetrical bending condition.
3	l •	w and find Modulus of elasticity of a given wire material
	from load deflection	<u> </u>
4	To verify the buckling loads for the given struts.	
5	To verify the centrifugal force formula	
6	To determine Brinell's Hardness Test.	
7	To draw influence lines for horizontal thrust of three hinge arch.	
8	To verify of reciprocal theorem.	
9	To verify deflections in curved members.	
10	To verify Muller's Br	eslau's principle and to measure carry over factor for a
10	prismatic beam.	
11	To perform Charpy's	s impact test.
12		e strength of steel bar and compressive strength of
12		ersal testing machine.
13	To determine fatigue	e load.
14	To determine torsion	nal properties of cylindrical specimen.

- 1. Be able to verify and apply theorem of structural engineering.
- 2. Be able to measure hardness/strength/fatigue of different materials.
- 3. Be able to measure the deflection characteristics of different structural components.

References

Lab Manuals