S. No.	Course Code	Course Name	Category	Туре	Credit	L	Т	Р
1	CET- 221	Building Technology	PC	Theory	2	2	0	0
2	CET- 222	Pipe & Channel Hydraulics	PC	Theory	4	3	1	0
3	CET- 223	Advanced Surveying	PC	Theory	2	2	0	0
4	CET- 224	Highway Engineering	PC	Theory	3	3	0	0
5	CET- 225	Structural Analysis-I	PC	Theory	4	3	1	0
6	CET- 226	Water Supply Engineering	PC	Theory	3	3	0	0
1	CEP- 227	Building Drawing	PC	Lab	1	0	0	2
2	CEP- 228	Hydraulics Lab	PC	Lab	1	0	0	2
3	CEP- 229	Advanced Surveying Lab	PC	Lab	1	0	0	2
4	CEP- 230	Road Material Testing Lab	PC	Lab	1	0	0	2
5	CEP- 231	Public Health Engineering Lab	PC	Lab	1	0	0	2
						Tota	l Credits:	18+5=23

UG/PG: UG	Department: Civil Engineering	
Course Code: CET 221	Course Name: Building Technology	
Credit: 2	L-T-P: 2-0-0	
Pre-requisite course:		

Classification of Buildings, low-rise and high-rise buildings, load bearing and framed construction; Building planning, building planning concepts, and Introduction to National building codes and byelaws; Concepts of various foundation types, foundation of walls, columns etc., foundation layout, foundation construction practices and failure issues; Stone and brick masonry construction, reinforced brick construction, lintel and arches; Roof construction and roofing materials, flat and pitched roofs, drainage of roofs, green roof concepts; Doors and windows Stairs and ramps, Lifts and Escalators, floors and floor finishes, wall finish; Thermal insulation, damp and fire proofing, Expansion and construction joints; Temporary supporting structures concepts for construction of buildings; Advances in building construction practices, prefabrication and pre-casting, modular construction.

Text books

- 1 Handbook of Building Construction Vol 1, M M Goyal, 2010, Jain Book Depot
- 2 Brick and Reinforced Brick Structures Dayaratnam P, Oxford & IBH

Reference books

- 1 National Building Code of India, BIS, Delhi.
- 2 Building Construction Handbook, R Chudley and Roger Greeno, 2013

UG/PG: UG	Department: Civil Engineering
Course Code: CET 222	Course Name: Pipe & Channel Hydraulics
Credit: 4	L-T-P: 3-1-0
Version:	Approved on:
Pre-requisite course:	

Comparison of Pipe and Channel Flows, Types of flows, Velocity distribution in Channels, Most Economical Channels: Rectangular and other geometrical channel sections, Concept of Specific Energy, Specific Force Concept, Gradually Varied Flow and Types Surface Profiles, Direct Step Method, Rapidly Varied Flow, Hydraulic jump and Surges.

Navier-Stokes equation, Laminar & Turbulent Flow in pipes, Laminar Flow, Hagen-Poiseuille Flow equation, Turbulent Flow, Hydro-dynamically Smooth and Rough pipes, Pandtl's mixing length theory, Moody's diagram.

Boundary Layer theory, laminar sub-layer, various b.l. thicknesses, Application of equations in b.l. including momentum integral equations, Establishment of flow, reduction of b.l. Concept of Drag and lift, flow around immersed bodies.

Hydraulic Machines- Introduction, Impact of free jets on flat and curved plates/ vanes, efficiency of water wheel, efficiency, Power and related concepts.

Brief introduction to various Types of turbines and pumps.

- 1. Open Channel Hydraulics by Subramanya
- 2. Hydraulics & Hydraulic Machines by Modi & Seth
- 3. Fluid Mechanics and Fluid Power Engineering by D.S. Kumar
- 4. Open Channel Hydraulics by V.T. Chow

UG/PG: UG	Department: Civil Engineering	
Course Code: CET 223	Course Name: Advance Surveying	
Credit: 2	L-T-P: 2-0-0	
Version:	Approved on:	
Pre-requisite course:		

Theory of errors; Adjustment of surveying observations; Triangulation and Trilateration; Various triangulation schemes; Type of triangulations; Triangulation measurements; Adjustment of triangulation scheme; Principles of photogrammetry; Aerial photography, Interpretation, Measurements from aerial photographs; Introduction to astronomy; Terms of reference planes and astronomical coordinates; Astronomical triangle /shortest distance determination; Time in astronomy; Uses of Total Station and other Advance surveying instruments.

Text Books

- 1. Wolf, P. R., A text book on Photogrammetry, 4th edition, 2012.
- 2. C.D. Burnside, Electromagnetic Distance Measurement, Crosby Lockwood and Son Ltd., London.
- 3. Punmia, B.C., Surveying Vol. II & III, 2005.

Reference Books

- 1. Kavanagh, B., Surveying Principles and Applications, Seventh Edition, Prentice Hall, 8th edition, 2008.
- 2. G.L. Hosmer, Geodesy, John Wiley & Sons, New York, 1946.

UG/PG: UG	Department: Civil Engineering
Course Code: CET 224	Course Name: Highway Engineering
Credit: 3	L-T-P: 3-0-0
Pre-requisite course:	

Introduction: Highway Material subgrade soil, stone aggregates, Cement, Concrete & bituminous material viz. bitumen, tar, cut back emulsions, Significance, and application of various tests on soil, stone aggregate bitumen and modified Binders.

Proportioning of materials by graphical method, Geometric Design: Highway classification, design, cross-sectional elements, horizontal & vertical alignment, sight distance, types of road crossings, roundabout, grade-separated intersections. Camber, Super-elevation, Radius of curve Horizontal and Transition Curves, Gradients, Valley curve, Summit curve. Design of pavement for Rural Roads as per IRC SP:72. Soil stabilization for rural roads.

- 1. Highway Engineering By S. K. Khanna and C.E.G Justo
- 2. Highway Materials by HMSO London.
- 3. IRC SP 72

UG/PG : UG	Department: Civil Engineering	
Course Code: CET 225	Course Name: Structural Analysis -I	
Credit: 4	L-T-P: 3-1-0	
Version:	Approved on:	
Pro-requisite courses Mechanics of Solids		

Pre-requisite course: Mechanics of Solids

Syllabus

Slopes and deflections in determinate beams using conjugate beam method and moment area method; Generalized coordinate system; Principles of real and virtual work; Maxwell's reciprocal theorem; Betti's theorem; Castigliano's theorems; Strain energy expressions; Strain energy method and virtual work (unit load) method for slopes and deflections in statically determinate frames and trusses; Static indeterminacy and released structure; Force method – method of consistent deformation for analysis of statically indeterminate beams, frames and trusses; Three moment theorem; Column analogy method; Moving loads and influence lines; Application to statically determinate structures; Muller Breslau's principle.

- 1. Mechanics of Structures, Vol. I & II by S.B. Junnarkar & H.J. Shah
- 2. Theory of Structures, Vol. I& II by G.S. Pandit and S.P. Gupta
- 3. Structural Analysis by C.K. Wang
- 4. Structural Analysis (6/e) by R.C. Hibbeller

UG/PG: UG	Department: Civil Engineering
Course Code: CET 226	Course Name: Water Supply Engineering
Credit: 3	L-T-P: 3-0-0
Version:	Approved on:
Pre-requisite course:	

Water supply; Demand; Sources; Quality standards; Water treatment: Method of purification of water; Screens, plain and coagulant aided sedimentation; Filtration-slow sand and rapid sand, disinfection; Water softening; Iron, Manganese, Fluoride, and Nitrate removal; Electro dialysis, R.O. and Ion exchange process, desalination. Different type of pipes and pipe joints, Pumping stations; Rural water supply management. Introduction to the concept of integrated water resources management.

- 1. Manual of Water Supply by CPHEEO, Ministry of Urban Dev., GOI
- 2. Water Supply by P.N. Modi
- 3. Water Works Engineering S.R. Qasim, E.M. Motley and G. Zhu

UG/PG: UG	Department: Civil Engineering	
Course Code: CEP 227	Course Name: Building Drawing	
Credit: 1	L-T-P: 0-0-2	
Pre-requisite course:		

The lab course intends to train students in reading and developing drawings of various types of buildings. The assignment will include reading various construction drawings, symbols used and strengthen concepts of converting drawings in to reality. The course will focus on developing plans, elevations, and sections of buildings, along with detailing of MEP drawings. The labs also introduces the software (s) used for the same.

Books/Manual

- 1. Time Saver Standards.
- 2. Neuferts Architects Data
- 3. Building Planning and Drawings by Shah, Kale and Patki
- 4. NBC -2005

UG/PG: UG	Department: Civil Engineering
Course Code: CEP 228	Course Name: Hydraulics Laboratory
Credit: 1	L-T-P: 0-0-2
Version:	Approved on:
Pre-requisite course:	

List of Experiments

- 1. Experiments on determination of the performance characteristics of <u>Pelton</u> turbine
 - a. Production and analysis of graphs of inlet pressure, flow rate, torque and power against speed for a selection of nozzle positions.
 - b. Determination of overall efficiency of conversion of fluid to mechanical energy, over a range of conditions.
- 2. Experiments on determination of the performance characteristics of <u>Francis</u> turbine.
 - a. Efficiency of a Francis turbine.
 - b. Performance of a Francis turbine at different flow rates.
 - c. The effect of different guide vane settings on turbine performance.
- 3. Experiment for Demonstration of the water hammer effect to produce a pumping action in Hydraulic Ram pump.
- 4. Experiments on Two stage (series & parallel) pumps.
 - a. Centrifugal pump performance and characteristics, typically head versus flow and efficiency versus flow.
 - b. Non-dimensional performance characteristics
 - c. Operation of centrifugal pumps in series.
 - d. Operation of centrifugal pumps in parallel
- 5. Experiments on Water hammer & Pipe Surge.
- 6. Establishment of uniform flow in channels (Tilted bed flume).
- 7. Study of hydraulic jump in tilted bed flume.

- 1. Open Channel Hydraulics by Subramanya
- 2. Hydraulics & Hydraulic Machines by Modi & Seth
- 3. Fluid Mechanics and Fluid Power Engineering by D.S. Kumar
- 4. Open Channel Hydraulics by V.T. Chow

UG/PG : UG	Department: Civil Engineering
Course Code: CEP 229	Course Name: Advanced Surveying
	Laboratory
Credit: 1	L-T-P: 0-0-2
Version:	Approved on:
Due vervielte Couver	

Pre-requisite Course:

List of Experiments

- 1. To determine horizontal angles in a triangle by 2-4-6 method of repetition.
- 2. To determine horizontal distance and vertical height using tangential method
- 3. To determine Tacheometric constants
- 4. To determine R.L. using Tacheometry
- 5. Contouring using radial method
- 6. To determine horizontal distance by Substance bar
- 7. Precise leveling using Auto Level
- 8. Triangulation using advance surveying equipments
- 9. Observations on Stereo-pair of photograph
- 10. Total station/EDM

Text Books

- 1. Punmia, B.C., Surveying Vol. II & III, 2005.
- 2. Wolf, P. R., A text book on Photogrammetry, 4th edition, 2012.
- 3. C.D. Burnside, Electromagnetic Distance Measurement, Crosby Lockwood and Son Ltd., London.

Reference Books

- 1. Kavanagh, B., Surveying Principles and Applications, Seventh Edition, Prentice Hall, 8th edition, 2008.
- 2. G.L. Hosmer, Geodesy, John Wiley & Sons, New York, 1946.

UG/PG: UG	Department: Civil Engineering		
Course Code: CEP 230	Course Name: Road Material Testing		
	Laboratory		
Credit: 3	L-T-P: 0-0-2		
Pre-requisite course: (CF- 224)	Pre-requisite course: (CF- 224) HIGHWAY ENGINEERING		

List of Test Experiments

- 1. Proctor & Modified Proctor Test.
- 2. Sieve Analysis (Sieve Shaker)
- 3. Liquid Limit Test.
- 4. Plastic Limit Test.
- 5. California Bearing Ratio (CBR) Test.
- 6. Aggregate Impact Value Test.
- 7. Aggregate Abrasion Value Test.
- 8. Aggregate Crushing Value Test.
- 9. Specific gravity test (aggregates & bitumen) Pycnometer.
- 10. Flakiness & Elongation Index Test (Thickness Gauge, Length Gauge)
- 11. Bitumen Softening Point Test.
- 12. Bitumen Ductility Value Test.

UG/PG: UG	Department: Civil Engineering
Course Code: CEP 231	Course Name: Public Health Engineering
	Laboratory
Credit: 1	L-T-P: 0-0-2
Dro-requisite course:	·

Pre-requisite course:

Syllabus

Water quality: principles of measurement and testing of water for parameters like pH, TDS, alkalinity, NO₃, PO₄-P, Hardness, Turbidity, residual chlorine, breakpoint chlorination, DO, Chlorides, Jar test for coagulant dosing, Assessment of biological quality of water.

Books

1. APHA (1995): Standard methods for the examination of water and wastewater. 17th edition APHA, Washington DC.