

VI Semester:

S.No.	Course Code	Course Title	Category	Туре	Credit	L	T	P
1.	22CHT354	Plant Design & Process Economics	PC	Theory	4	3	1	0
2.	22CHT358	Transport Phenomena	PC	Theory	4	3	1	0
3.	22CHT353	Petroleum Refining and Petrochemicals	PC	Theory	3	3	0	0
4.	22CHT356	Process Equipment Design	PC	Theory	4	3	1	0
5.	22BMT922	Management Principles for Engineers	IC	Theory	3	3	0	0
6.	22CHP359	Petroleum Lab	PC	Lab	1	0	0	2
7.	22CHP360	Process Equipment Design Lab	PC	Lab	1	0	0	2
		Total			20	15	3	4

SEMESTER – VI

1. Subject Code: 22CHT354 Course Title: Plant Design and Process Economics

2. Contact Hours: L: 3 T: 1 P: 03. Credits: 4 Semester: VI

4. Pre-requisite: Nil.

- 5. Course Objective: To provide comprehensive knowledge of various process parameters and economics involved in the development of process and plant design.
- 6. Course Outcomes: Upon completion of this course, the students will be able to:
 - i. Understand the concepts of engineering and economics for chemical plant design and optimization
 - ii. Synthesize a process flow sheet for recycle structure
 - iii. Calculate different costs involved in a process plant
 - iv. Perform breakeven analysis and optimum design of a process

Unit	Contents	Contact
No.		Hours
1.	Process Design and Development: General design considerations,	10
	hierarchy of chemical process design, nature of process synthesis and	
	analysis, Developing a conceptual design and finding the best	
	flowsheet, input information and batch versus continuous, Input/output	
	structure of the flowsheet, Recycle structure of the flowsheet, Separation system, Heat Exchanger Networks, Site selection and	
	feasibility analysis.	
2.	Project Concept to Commissioning: Milestones, project execution as	4
۷.	conglomeration of technical and non-technical activities, contractual	4
	details. Contract:meaning, contents, types of contract. Lump-sum	
	Turnkey (LSTK), Eng, Procurement and Construction (EPC), Eng,	
	Procurement and Construction Management (EPCM). Mergers and	
	Acquisitions	
3.	Estimation of Project Cost:Introduction to various components of	8
	project cost and their estimation. Introduction to concept of Inflation,	
	location index and their use in estimating plant and machinery cost.	
	Various cost indices, Relationship between cost and	
	capacity.Relationship between price of a product and project cost and	
	cost of production	
4.	Project Financing: Debt, Equity ratio, Promoter's contribution,	6
	Shareholder's contribution, source of finance, time value of money,	
	annuity. Concept of interest, time value of money, selection of various	
	alternative equipment or system based on this concept. Indian norms,	
	EMI calculations. Depreciation concept, Indian norms and their utility in	
	estimate of working results of project.	
5.	Estimate of Profitability Analysis of Project: Capacity utilization,	8
	Gross profit, operating profit, profit before tax, Corporate tax, dividend,	
	Net cash accruals. Project evaluation: Cumulative cash flow analysis	

	Break-Even analysis, incremental analysis, various ratios analysis,	
	Discounted cash flow analysis	
6.	Techno-commercial Analysis: Reading of Balance Sheets and	4
	evaluation of Techno-commercial Project Reports, PERT, CPM, bar	
	charts and network diagrams	

(A) Text Books

S.No.	Authors / Name of Book / Publisher	Year of
		Publication
1	Douglas, James M., "Conceptual Design of Chemical Processes",	1988
	McGraw-Hill, International Editions (Chemical Engineering	
	Series), New York, USA.	
2	Peters, Max S., K.D. Timmerhaus and R.E. West, "Plant Design	2017
	and Economics for Chemical Engineers", (5 th Ed.,), McGraw-Hill	
	International Editions (Chemical Engineering Series), New York,	
	USA.	
3	Mahajani, V.V., "Chemical Project Economics", Macmillan Indian	2005
	Ltd., New Delhi, India.	

S.No.	Authors / Name of Book / Publisher	Year of
		Publication
1	Biegler, L.T., I.E. Grossmann and A.W. Westerberg, Systematic	1997
	Methods of Chemical Process Design, Prentice Hall (Pearson	
	Education), New Jersey, USA	
2	Smith, R. Chemical Process Design and Integration. John Wiley &	2005
	Sons, West Sussex, England.	

1. Subject Code: 22CHT358 Course Title: Transport Phenomena

2. Contact Hours: L:3 T:1 P:03. Credits: 4 Semester: VI

- 4. Pre-requisite: Momentum Transfer Operations, Heat Transfer, Mass Transfer.
- 5. Course Objective: To impart knowledge about individual and simultaneous momentum, heat and mass transfer, model development along with appropriate boundary conditions.
- 6. Course Outcome: Upon completion of this course, the students will be able to:
 - i. Understand the chemical and physical transport processes and their mechanism
 - ii. Do heat, mass and momentum transfer analysis
- iii. Analyze industrial problems along with appropriate approximations and boundary conditions
- iv. Develop steady and time dependent solutions along with their limitations

Unit	Contents	Contact
No.		Hours
1.	Continuum fluids, Newton's law of viscosity, Introduction to non-	4
	Newtonian fluids, pressure and temperature dependency of viscosity,	
	viscosity of gases at low density.	
2.	Laminar flow, shell momentum balance, boundary conditions, selected	9
	applications. Equations of change for isothermal systems-Navier-Stokes	
	equation, use of equations of change to set up steady state flow problems	
	with Newtonian fluids.	
3.	Friction factor, similarity and dimensionless parameters, Buckingham pi-	7
	theorem, Microscopic mass, momentum and energy balance for	
	isothermal systems, Bernoulli's equation, compressible flow, pipe flow.	
4.	Shell energy balances, Fourier's Law of heat conduction, boundary	7
	conditions. Application to steady and unsteady problems, convective heat	
	transfer, heat transfer coefficients for forced convection around	
	submerged objects, for free convection for condensation of pure vapours	
	on solid surface.	
5.	Macroscopic energy balance, Bernoulli's Equation, parallel/counter flow	5
	heat exchanger - concepts, heating of a liquid in an agitated tank,	
	similarity parameter.	
6.	Fick's Law of diffusion, analogy with heat transfer, shell mass balances,	8
	boundary conditions, applications, species continuity equation, conductive	
	mass transfer, mass transfer coefficients, applications, correlations,	
	macroscopic balances and application to solve steady state problems.	

(A)Text Books

S.No.	Authors / Name of Book / Publisher	
		Publication
1	Bird, R. B., Stewart, W. E. and Lightfoot, E. N., Transport Phenomena,	2006
	2 nd Ed., Wiley.	

S.No.	Authors / Name of Book / Publisher	Year of
		Publication
1	Batchelor, G. K., An Introduction to Fluid Dynamics, 2 nd Ed.,	2000
	Cambridge University Press, Cambridge.	
2	Slattery, J. C., Momentum, Energy and Mass Transfer in Continua,	1981
	Robert E. Krieger Publishing Company, New York.	
3	Geankoplis, C. J., Transport Processes and Separation Process	2013
	Principles, 4 th Ed., Pearson Education India, New Delhi.	

1. Subject Code: 22CHT353 Course Title: Petroleum Refining and

Petrochemicals

2. Contact Hours: L: 3 T: 0 P: 03. Credits: 3 Semester: VI

4. Pre-requisite: Nil.

- 5. Course Objective: To impart knowledge of petroleum refining, hydrocarbon processing, and derived petrochemicals
- 6. Course Outcomes: Upon completion of this course, the students will be able to:
 - i. Select the appropriate characterization parameters
 - ii. Specify the properties of petroleum products
- iii. Attain knowledge of various separation & conversion processes involved in petroleum refining
- iv. Attain knowledge of manufacturing of various petrochemical products

Unit	Contents	Contact
No.		Hours
1.	Introduction: World petroleum resources, Petroleum industries in India,	
	Chemistry and composition of crude oil, Transportation and pretreatment	
	of crude oil,	8
	New trends in refinery	
2.	Classification & Crude Oil	8
	Distillation: Classification of petroleum, Characterization of petroleum	
	fractions, Impurities in crude oil, Desalting of crude oil, Atmospheric	
	distillation and vacuum distillation units.	
3.	Conversion Processes: Thermal conversion processes, Conventional vis-	12
	breaking and soaker visbreaking process, Coking processes, Catalytic	
	conversion processes, Fluid catalytic cracking, Catalytic reforming,	
	Hydrocracking, Catalytic alkylation, Catalytic isomerization and catalytic	
	polymerization, Distillation Conversion Method.	
4.	Finishing Processes: Sulphur conversion processes, Sweetening	4
	processes, Solvent extraction process, Hydro treating process.	
5.	Lube oil Manufacturing Processes: Solvent extraction of lube oil	3
	fractions, Manufacture of petroleum wax, Hydro finishing process,	
6	Petrochemicals: Primary petrochemicals such as acetylene, propylene,	5
	butadiene, benzene, toluene, naptha, xylene and their derived polymers.	

(A) Text Books

S.No.	Authors / Name of Book / Publisher	Year of	
		Publication	
1	BhaskaraRao, B.K., "Modern Petroleum Refining Processes",	2018	
	6 th Ed.,Oxford& IBH Publishing Company Pvt. Ltd. New Delhi.		
2	Prasad, R., "Petroleum Refining Technology", Khanna Publishers	1998	
3	Mall, I.D. Petrochemical Process Technology, 2 nd Ed., Laxmi	2017	
	Publications Private Limited.		

S.No.	Authors / Name of Book / Publisher	Year of
		Publication
1.	Nelson, W. L., 'Petroleum Refinery Engineering', 4 th Ed.,Tata McGraw	1958
	Hill Publishing Company Limited.	
2.	Garry, J.H., "Petroleum Refining Technology and Economics", 5 th Ed.,	2007
	CRC Press	
3.	Wells G. M., "Handbook of petrochemicals and processes", Gower	1991
	Publishing	
4.	Spitz P. H., "Petrochemicals: The rise of an industry", John Wiley &	1988
	Sons.	
5.	Sarkar, G.N., "Advanced Petroleum Refining", 2 nd Ed., Khanna	1996
	Publishers.	

1. Subject Code:22CHT356 Course Title: Process Equipment Design

2. Contact Hours: L:3 T: 1 P:03. Credits: 4 Semester: VI

4. Pre-requisite: Heat Transfer, Mass Transfer-I, Mass Transfer-II.

5. Course Objective: To learn the design procedures of process equipment used in chemical process industries

6. Course Outcomes: Upon completion of this course, the students will be able to:

i. Design shell and tube heat exchanger design

ii. Design distillation column

iii. Design packed bed, absorption column

iv. Design agitated vessels and evaporators

7. Details of Course:

Unit	Contents	Contact
No.		Hours
1.	Shell and Tube Heat Exchanger Design: Kern method; Bell's method of	10
	Shell-and-tube heat exchanger design, Plate heat exchanger design; Finned	
	tube heat exchanger.	
2.	Condenser design: horizontal condenser, vertical condenser,	10
	Reboilers: Design of forced-circulation reboiler, kettle and thermosyphon	
	reboilers.	
	Evaporators: Design of single and multi-effect evaporators.	
3.	Gas-Liquid Contact Systems: Distillation column, tray hydraulics of	10
	sieve and valve trays; Absorption tower, Design of packed bed columns.	
4.	Agitated Vessels: Design of mixing vessels, gas-spraying systems;	10
	impellers, propellers, anchors and helical ribbon-type agitators.	

8. Books:

(A) Text Books

S.No.	Authors / Name of Book / Publisher	Year of
		Publication
1	Sinnott, R.K., "Coulson and Richardson's Chemical Engineering	2021
	Design," 6 th Ed., Butterworth-Heinemann	
2	McCabe, W. L., Smith, J. C. and Harriot, P., "Unit Operations of	2017
	Chemical Engineering", 7 th Ed., McGraw-Hill, NY.	
3	Kern, D. Q., "Process Heat Transfer," McGraw-Hill.	1950

S.No.	Authors / Name of Book / Publisher	Year of
		Publication
1	Ludwig, E.E., Applied Process Design for Chemical and	
	Petrochemical Plants, Vol. 1,2, and 3, 4 th Ed., Gulf Professional	
	Publishing.	
2	Evans, F.L., "Equipment Design Handbook for refineries and	1980
	Chemical Plants," 2 nd Ed., Vol. 2, Gulf Publishing.	
3	Smith, B.D., "Design of Equilibrium Stage Processes," McGraw-Hill.	1963

CourseTitle:ManagementPrinciplesforEngineers (To be taught by Department of Management Studies)

	L	T	P	C
Prerequisite:Nil.	3	0	0	3

CourseLearningObjectives

Bytheendofthis coursestudentwillbeableto:

- 1. Understandtheglobaltransitiontowards anewnormalofmanagement.
- $2. \ Demonstrate the managerial roles, skills and functions for responsible management.$
- 3. Develop the understanding and cognizance of the importance of Professional management (ethical, responsible, and sustainable).
- 4. Performvarioustoolsandtechniquestobe usedintheperformanceofthemanagerialjob.
- 5. Makeeffectiveapplicationofacquiredknowledgetodiagnoseandsolveorganizationalproblemsan d develop optimalmanagerial decisions.
- 6. Diagnoseandcommunicatethecomplexities associated with management of various issues in the organizations and integrate the learning in handling these complexities.

CourseContent

- Management: Nature, Scopeand Functions, Managerial Roles and Levels of Management;
- GeneralManagementProcessesandPrinciples,Management Practices;
- EssentialsofPlanning;Strategies,policiesandplanningpremises;Decisionmaking;
- Organizing:OrganizationalDesign&OrganizationalStructures;
- Leading:Motivation;Leadership, PowerandAuthority;LeadershipStyles;
- Controlling;StepsandtypesofControlProcess;
- Dimensions of Management: Ethical management, Responsible Management, Sustainable Management.

References

- 1. Robbins, Stephen P. and Coulter, Mary (2019) 'Management', 14th edition, Prentice Hallof India
 - Laasch, O. (2021). Principles of Management-
- 2. PracticingEthics,Responsibility,Sustainablity,2nd Edition,SagePublications.
 - Hill, Charles WL and McShane, Steven L. (2017) Principles of Management, Special Indian Editi
- 3. on,McGrawHill Education
 - Robbins, Stephen P., Decenzo, David A. & Bhattacharya, Sanghamitra (2009) Fundamentals of
- 4. Management, latestedition, Pearson Education
- 5. Koontz, Haroldand Weihrich, Heinz & Ramachandra Aryasri A. (2016). Principles of Management, Latestedition, McGraw Hill Education

1. Subject Code: 22CHP359 Course Title: Petroleum Lab

2. Contact Hours: L: 0 T: 0 P: 2 3. Credits: 1 Semester: VI

4. Pre-requisite: Nil

5. Course Objective: To make students do hands on practice on the characterization of petroleum products.

6. Course outcome: Upon completion of this course, the students will be able to:

i. Hands-on practice for characterization of crude oil and different petroleum products by standard methods

ii. Development of practical skills leading to research initiatives

Experiment	Objective	Contact
No.		Hours
1.	To determine the vapour pressure of volatiles, non-viscous	2
	petroleum products except liquefied petroleum gases using	
	Reid Vapour Pressure Apparatus.	
2.	To determine the percentage of carbon residue of sample fuel	2
	oils using Rams Bottom Apparatus.	
3.	To find out the smoke point of kerosene oil.	2
4.	To determine Flash Point of sample oil using Penskymarten's.	2
5.	To determine Flash point of kerosene using Abel apparatus.	2
6.	Distillation plant and distilled water.	2
7.	To determine Distillation of petroleum products.	2
8.	To determine Aniline Point of given sample.	2
9.	To determine viscosity of petroleum products and lubricants by	2
	Saybolt Viscometer Apparatus.	
10.	To determine Cloud point and pour point of given sample.	2
11.	To determine the calorific value of given sample using bomb	2
	calorimeter apparatus.	

(A)Text & Reference Books

S.No.	Authors / Name of Book / Publisher	Year of
		Publication
1	Nelson, W. L. Petroleum Refinery Engineering, 4 th Ed., Tata	1958
	McGraw Hill Publishing Company Limited	
2	Prasad, R., "Petroleum Refining Technology", Khanna Publishers	1996

S.No.	Authors / Name of Book / Publisher	Year of
		Publication
1	BhaskaraRao, B.K., "Modern Petroleum Refining Processes",	2018
	6 th Ed., Oxford& IBH Publishing Company Pvt. Ltd. New Delhi.	
2	Mall, I.D. Petrochemical Process Technology, 2 nd Ed., Laxmi	2017
	Publications Private Limited.	

1. Subject Code: 22CHP360 Course Title: Process Equipment Design Lab

2. Contact Hours: L: 0 T: 0 P: 2 3. Credits: 1 Semester: VI

4. Pre-requisite: Process Equipment Design.

5. Course Objective: To learn the design procedures of process equipment used in chemical process industries

6. Course Outcome: Upon completion of this course, the students will be able to:

i. Design shell and tube heat exchanger design

ii. Design distillation column

iii. Design packed bed, absorption column

iv. Design agitated vessels and evaporators

Experiment	Objectives	Contact
No.		Hours
1	To study Aspen Plus manual and practice some simple flow	6
	sheeting problems. The objectives are:	
	a. To know the various units available (reactor, distillation	
	column, heat exchanger, etc.)	
	b. To know how to connect the input and output ports of the	
	units	
	c. To carry out the flash calculation	
	d. To add the components in the flowsheet	
2	Material and energy balance calculations	3
3	To calculate the overall heat transfer coefficient of a shell and	3
	tube heat exchanger	
4	To design a shell and tube heat exchanger using Kern's method	3
5	To design a shell and tube condenser	3
6	To design a thermosyphon reboiler	3
7	To design a plate heat exchanger	3
8	To carry out flash calculation manually and in Aspen Plus	3
9	To find number of theoretical plates graphically and in Aspen	3
	Plus	
10	Cost estimation and profitability analysis	3

(A)Text Books

S. No.	Authors / Name of Book / Publisher	Year of
		Publication
1	Sinnott, R.K., "Coulson and Richardson's Chemical Engineering	2021
	Design," 6 th Ed., Butterworth-Heinemann	
2	McCabe, W. L., Smith, J. C. and Harriot, P., "Unit Operations of	2017
	Chemical Engineering", 7 th Ed., McGraw-Hill, NY.	
3	Ludwig, E.E., Applied Process Design for Chemical and	2007
	Petrochemical Plants, Vol. 1, 2, and 3, 4 th Ed., Gulf Professional	
	Publishing.	