

S.No.	Course Code	Course Title	Category	Туре	Credit	L	Т	Р
1.	22CHS403	Training Seminar	РС	Theory	2	0	0	4
2.	22CHW404	Minor Project	Project	Theory	3	0	0	6
4.		Program Elective-I	PE	Theory	3	3	0	0
5.		Program Elective-II	PE	Theory	4	3	1	0
		Program Elective-III	PE	Theory	3	3	0	0
6.		Open Elective-I	OE	Theory	3	3	0	0
	Total			1	18	12	1	10
	Program E	lective-I		Program 1	Elective-I	[
22CHT925	Operation Re	esearch	22CHT922	CFD in C	Chemical E	Engine	eerir	ıg
22CHT929	22CHT929Solid & Hazard Waste22CHT923Mechanical Design of ProcessManagementEquipment			38				
22CHT924	Nano-materia	lls & Characterization						
	Progra	am Elective-III						
22CHT927	22CHT927 Polymer Science and Technology							
22CHT928 Process Integration								·
22CHT926	Optimization	of Chemical		-				
	Processes							

VII Semester:

SEMESTER – VII Program Elective – I

Course Title: Operation Research

- 2. Contact Hours: L: 3 T: 0 P: 0
- 3. Credits: 3 Semester: VII
- 4. Pre-requisite: Nil.
- 5. Objective: The Objective of the paper is to introduce the basic concepts of Operational Research and linear programming to the students.
- 6. Course Outcomes: Upon completion of this course, the students will be able to:
 - i. Be able to understand the characteristics of different types of decision-making environments and the appropriate decision making approaches and tools to be used in each type.
 - ii. Be able to build and solve Transportation Models and Assignment Models.
 - iii. Be able to design new simple models, like: CPM, to improve decision-making and develop critical thinking and objective analysis of decision problems.
- 7. Details of Course:

Unit	Contents	Contact
No.		Hours
1.	Introduction & Linear Programming Problem: Nature and meaning of	8
	operations research, general methods for solving operations research	
	problems, main characteristics of operations research in decision making,	
	Role of computers in operations research. Formulation of LP problem,	
	graphical solution of LP problem, general formulation of LP problem,	
	slack and surplus problem, standard form of LP problem, matrix form of	
	LP problem, some important definitions, assumptions in LPP, limitations	
	of LP, Applications of LP.	
2.	Simplex Method: Definition and notations, computational procedure,	12
	artificial variable technique- two phase method, Big-M method,	
	disadvantages of Big M method over two phase method, degeneracy	
	problem, method to resolve degeneracy, special cases- alternative	
	solution, unbounded solutions, non-existing solution, solution of	
	simultaneous equations by simplex method, flow chart of simplex	
	method.	
	Duality in Linear Programming: Concept of duality, primal-dual	
	problems, rules for converting any primal problem into its dual, duality	
	theorems, primal and dual correspondence, duality and simplex method,	
	shadow prices in LP, advantages of duality.	
	Dual Simplex Method: Computational procedure of dual simplex	
	method, advantages of dual simplex over simplex method, different	
2	between simplex and dual simplex methods.	
3.	Assignment Problem: Introduction, mathematical formulation of	6
	assignment problem, fundamental theorems, Hungarian method,	
	unbalanced assignment problem, variations of assignment problem-	

	maximal assignment problem, restriction on assignment, traveling	
	salesman problem- formulation and solution procedure.	
4.	Transportation Models: Introduction, mathematical formulation,	6
	feasible, basic feasible and optimum solutions, tubular representation,	
	loops in table, IBFS to transportation problem, moving towards optimum	
	solution, degeneracy in transportation problem, unbalanced transportation	
	problem, time minimizing transportation problem, transshipment	
	problem, time minimizing transportation problem, transpirent	
5.	Network Scheduling by PERT/CPM: Introduction, Networks and basic	8
	components, Rules of network construction, Time calculations in	
	networks, Critical Path Method (CPM), PERT, PERT calculations,	
	Negative float and negative slack, Advantages of network.	

(A) Text Books

S.	Authors / Name of Book / Publisher	
No.		Publication
1	Operations Research, P K Gupta and D S Hira, S. Chand and Company	2007
	LTD. Publications, New Delhi.	
2	Operations Research, An Introduction, Seventh Edition, Hamdy A. Taha,	2006
	PHI Private	
	Limited.	

S.	Authors / Name of Book / Publisher	Year of
No.		Publication
1	Operations Research, Theory and Applications, Sixth Edition, J K	2016
	Sharma, Trinity Press, Laxmi Publications Pvt. Ltd.	
2	Taha, H.A., "Operations Research, an introduction", 8th th edition,	2011
	Prentice Hall.	
3	Rao, S.S., "Engineering Optimization: Theory and Practice," 4 th ed.,	2000
	New Age International, New Delhi.	

Course Title: Solid and Hazard Waste Management

- 2. Contact Hours: L: 3 T: 0 P: 0
- 3. Credits: 3 Semester: VII
- 4. Pre-requisite: Nil.
- 5. Objective: Understanding the problems of municipal, biomedical, hazardous, electronic, and industrial wastes.
- 6. Course Outcomes: Upon completion of this course, the students will be able to:
 - i. Carry out sampling and characterization of solid waste; analysis of hazardous waste constituents including QA/QC issues.
 - ii. Understand health and environmental issues related to solid waste management.
 - iii. Apply steps in solid waste management-waste reduction at source, collection techniques, materials and resource recovery/recycling, transport, optimization of solid waste transport, treatment and disposal techniques.
 - iv. Economics of the onsite vs. offsite waste management options.

7. Details of Course:

Unit	Contents	Contact
No.		Hours
1.	Introduction of solid wastes including municipal, hospital, industrial,	7
	battery, electronics, and agro solid waste; legal issues and requirements	
	for solid waste management and health and environmental issues related	
	to solid waste management. Sampling and characterization of solid waste.	
	Analysis of hazardous constituents in solid waste including QA/QC	
	issues.	
2.	Health and environmental issues related to solid waste management,	8
	Waste reduction at source - municipal and industrial wastes, Material and	
	resource recovery/recycling from solid wastes.	
3.	Methods of waste collection, collection techniques, waste container	15
	compatibility, waste storage requirements, transportation of solid wastes.	
	Processing of solid waste: segregation, particle size reduction,	
	autoclaving, microwaving, incineration, non-incineration thermal	
	techniques, composting, bio-remediation, use of refuse derived fuels, land	
	fill. Leachate treatment.	
4.	Economics of on-site vs. off-site waste treatment and disposal (individual	10
	vs. common disposal). Waste minimization and concept of industrial	
	ecology and industrial symbiosis, Integrated waste management practices.	

8. Books:

(A) Text Books

S.	Authors / Name of Book / Publisher	Year of
No.		Publication
1	Batstone R., Smith J.E. (Jr.) and Wilson D. The Safe Disposal of	1989
	Hazardous Wastes-the Special Needs and Problems of Developing	
	Countries, The World Bank Technical Paper No. 93, Vol. I, II and III,	
	Washington, DC, The World Bank.	
2	Central Public Health and Environmental Engineering Organization	2000
	(CPHEEO), Manual on Municipal Solid Waste Management, New Delhi,	
	Controller of Publications.	
3	Freeman H.M. Standard Handbook of Hazardous Waste Treatment and	1988
	Disposal, New York, McGraw-Hill.	

S.	Authors / Name of Book / Publisher	Year of
No.		Publication
1	Tchobanoglous G., Theisen H. and Vigil S. Integrated Solid Waste	1993
	Management: Engineering Principles and Management Issues, New	
	York, McGraw-Hill.	
2	Vesilind P.A., Worrell W.A. and Reinhart D.R. Solid Waste	2001
	Engineering, Australia, CL Engineering.	

Course Title: Nano-materials & Characterization

- 2. Contact Hours: L: 3 T: 0 P:0
- 3. Credits: 3 Semester: VII
- 4. Pre-requisite: Nil.
- 5. Objective: To study the concept of nanotechnology, and understand the fabrication, characterization, and applications of nano-materials
- 6. Course Outcomes: Upon completion of this course, the students will be able to:
 - i. Understand the concept of nano-material synthesis.
 - ii. Understand the various characterization techniques for the characterization of nanomaterials.
- 7. Details of Course:

Unit	Contents	Contact
No.		Hours
1.	Introduction of the course with course handout; Definitions and Concepts:	4
	Nanoscience, Nanotechnology, Nanoparticles, Technology that enables	
	science. Nano in nature, Current themes in nanoscale science and	
	technology. Commercial applications of nanotechnology, Nano-based	
	products, The social dimensions of nanotechnology. Introduction to	
	physics of solid state, Size dependence of properties, Energy bands of	
	insulators, conductor and semiconductor	
2.	Non-traditional nano-fabrication: Top-down approach, Bottom-up	7
	approach, Classification of synthesis methods, Physical methods-	
	Mechanical milling, Laser Ablation method. Physical vapour deposition-	
	inert gas condensation, Evaporation (Thermal, e-beam), Sputtering,	
	Plasma Arcing, chemical vapour deposition (RF-plasma enhanced CVD	
	and Microwave plasma enhanced CVD).Liquid Phase synthesis, Co-	
	precipitation, Chemical reduction method, Nucleation and growth, Role of	
	capping/stabilizing agent and surfactant. Hydrothermal/solvothermal	
	method, Crystal growth process, Factors affecting the growth, Apparatus,	
	Synthesis and characterization of nanoparticles. Sol-Gel method,	
	Mechanism of sol and gel formation, Synthesis of Xerogel and Aerogel. Si	
	processing fabrication, Nanodevices, CMOS, MOSFET devices, Lithography techniques. Optical lithography, Electron lithography, X-ray	
	lithography	
3.	Crystalline and amorphous solid, Types of Crystalline solids, Lattice, Unit	5
5.	cell, Crystal system. Atomic arrangements in unit cells, crystal planes, X-	5
	ray diffract from crystal planes, Miller indices of crystal planes, Basics of	
	diffraction. X-ray diffraction, Bragg's law, Diffraction pattern study,	
	Application of XRD. Methods of measuring properties, Surface area	
4.	analysis, BET method, Pore size study Quantum confinement, Quantum dots, Difference between bulk	7
4.		/
	semiconductor, Thin film semiconductor, Quantum wire and quantum dots: Discrete energy levels. Fabrication of quantum dots. Patterned	
	dots; Discrete energy levels. Fabrication of quantum dots, Patterned	

growth, Self-organized growth, Applications of quantum dots. Process	
self-assembly , Semiconductor island, Monolayer formation. Car	bon
nanostructures, Nature of carbon bond, New carbon structures, Discov	very
of C_{60} . Structure of C_{60} and its crystal, Superconductivity of	C ₆₀ ,
Fullerenes. Carbon nanotubes, Fabrication, Structure. Properties of car	bon
nanotubes, Electrical, vibrational and mechanical properties; Application	ons
of carbon nanotubes.	
5. Optical spectroscopy of nanostructures, Fundamentals of Ran	man 6
Spectroscopy, Light scattering phenomenon, Types of scattering, Sto	okes
Scattering, Anti-stokes Scattering, Raman vs. Rayleigh scatter	ing,
Mechanism of Raman and Rayleigh scattering, Raman vs. IR, Ran	nan
scattering spectrum and infrared absorption spectrum, Energy le	evel
diagrams, Polarizability, Dipole moment, Raman-active and Non-Ram	nan-
active Vibrations (III), Raman Depolarization Ratios, Raman ative and	l IR
active, Study of Raman spectra, Infrared spectroscopy for nanostructu	res,
FTIR, Asymmetric and non-asymmetric stretchings, Bending vibra	tion
mode, Library of FTIR spectra, Components of IR instruments, I	Data
interpretation from IR spectrum	
6. Scanning probe microscopy, Fundamental of electron microsco	opy, 6
Magnification and resolution, Light microscope, Wave-particle duality	for
electrons. Electron sources, source characteristics, source types, source	irce
characteristics, Physics of electron emission, operation of electron g	gun.
Mechanism of electron-solid interaction, Transmission elect	tron
microscope, Components of TEM, TEM imaging, Sample preparation	for
TEM, Scanning electron microscopy, SEM vs TEM, Components	
SEM. FE-SEM vs SEM, SEM imaging, Sample preparation, ED	AX
analysis, Interpretation of data from SEM and TEM images. Selected a	
electron diffraction, Indexing of diffraction pattern, Bravais-lattice and	
parameters, Revision of scanning probe microscopy	

(A) Text Books

S.	Authors / Name of Book / Publisher	Year of
No.		Publication
1	C. P. Jr. Poole and F. J. Owens, Introduction to Nanotechnology, John	2003
	Wiley.	
2	J. D. Plummer, M. D. Deal and P. B. Griffin, Silicon VLSI Technology,	2000
	Prentice Hall.	
3	C. Kittel, Introduction to Solid State Physics-A Chapter about	2004
	Nanotechnology, John Wiley.	

SEMESTER – VII Program Elective – II **Course Title: CFD in Chemical Engineering**

1. Subject Code: 22CHT922

- 2. Contact Hours: L: 3 T: 1 P: 0
- 3. Credits: 4 Semester: VII
- 4. Pre-requisite: Nil.
- 5. Course Objective: To provide brief introduction of Computational Fluid Dynamics along with chemical engineering application specifically, analysis of fluid mechanics and heat transfer related problems.
- 6. Course Outcomes:Upon completion of this course, the students will be able to:
 - i. Solve PDE
 - ii. Use Finite Difference and Finite Volume methods in CFD modelling
 - iii. Generate and optimize the numerical mesh
 - iv. Simulate simple CFD models and analyze its results
- 7. Details of Course:

Unit	Contents	Contact
No.		Hours
1.	Introduction: Illustration of the CFD approach, CFD as an engineering	6
	analysis tool, Review of governing equations, Modeling in engineering,	
	Partial differential equations- Parabolic, Hyperbolic and Elliptic	
	equation, CFD application in Chemical Engineering, CFD software	
	packages and tools.	
2.	Principles of Solution of the Governing Equations: Finite difference	12
	and Finite volume Methods, Convergence, Consistency, Error and	
	Stability, Accuracy, Boundary conditions, CFD model formulation.	
	Mesh Generation: Overview of mesh generation, Structured and	
	Unstructured mesh, Guideline on mesh quality and design, Mesh	
	refinement and adaptation.	
3.	Solution Algorithms: Discretization schemes for pressure, momentum	12
	and energy equations - Explicit and implicit Schemes, First order upwind	
	scheme, second order upwind scheme, pressure-velocity coupling	
	algorithms, velocity-stream function approach, solution of Navier-Stokes	
	equations.	
	CFD Solution Procedure: Problem setup – creation of geometry, mesh	
	generation, selection of physics and fluid properties, initialization,	
	solution control and convergence monitoring, results reports and	
	visualization.	
4.	Case Studies: Benchmarking, validation, Simulation of CFD problems	10
	by use of general CFD software, Simulation of coupled heat, mass and	
	momentum transfer problem.	

(A) Text Books

S.	Authors / Name of Book / Publisher	Year of
No.		Publication
1	Niyogi, P. Chakrabarty, S.K. and Laha, M.K., "Introduction to	2006
	computational fluid dynamics', Pearson education.	
2	Ranade, V.V., "Computational flow modeling for chemical reactor	2002
	engineering", Academic Press.	
3	Muralidhar, K.,andSundararajan, T. "Computational Fluid Flow and	2003
	Heat Transfer", Narosa Publishing. House	

S.	Authors / Name of Book / Publisher	Year of
No.		Publication
1	P.S. Ghosdastidar, "Computer Simulation of Flow and Heat	1998
	Transfer", Tata McGraw-Hill.	
2	Suhas V. Patankar. "Numerical Heat Transfer and Fluid	2018
	Flow", Taylor and Francis.	
3	LI J., G. H. Yeoh, C Liu. "A Computational Fluid Dynamics",	2008
	ELSEVER.	
4	Anderson J.D. "Computational Fluid Dynamics", Mc-Graw	1995
	Hills.	
5	J H Ferziger and M Peric, "Computational Methods for Fluid	2002
	Dynamics", Springer.	
6	ANSYS Manual.	

1. Subject Code: 22CHT923 Course Title: Mechanical Design of Process Equipment

- 2. Contact Hours: L:3 T:1 P:0
- 3. Credits: 4 Semester: VII
- 4. Pre-requisite: Nil.
- 5. Objective: To understand the mechanical design methods for various process equipment.
- 6. Course Outcomes: Upon completion of this course, the students will be able to:
 - i. Determine the parameters of equipment design and important steps involved in design.
 - ii. Students demonstrated ability to design various components of process equipment as heads, shell, flanges and fittings and supports and complete design of a chemical ·
 - iii. Design pressure vessels
 - iv. Students understood design of storage vessel, mechanical design of various process equipment such as heat exchanger, distillation column, piping, reactors, etc.
- 7. Details of Course:

Unit	Contents	Contact
No.		Hours
1.	Design Preliminaries: Introduction, General design procedure, Equipment classification, Design codes, Design considerations, Design pressure, Design temperature, Design stress, Factor of safety, Design wall thickness, Corrosion allowance, Weld joint efficiency factor, Design loadings, Stress concentration, Thermal stress and Criteria of failure.	6
2.	Pressure Vessels: Classification of pressure vessels; Design of cylindrical and spherical shells under internal and external pressure; Selection and design of closures; Optimum length to diameter ratio of pressure vessel using common types of closures; Design of jacketed portion of vessels; Selection and design of nozzles; Elementary idea of compensation for openings; Selection of gaskets; Selection and design of flanges; Pipe thickness calculation under internal and external pressure; Introduction to inspection and non-destructive testing; Complete design calculations and shop drawing for at least one pressure vessel using heads and flanges as per code specifications.	18
3.	Tall Tower Design: Design of shell, skirt, bearing plate and anchor bolts for tall tower used at high wind and seismic conditions.Supports: Design of lug support and saddle support including bearing plates and anchor bolts.	8
4.	 Storage Tanks: Filling and breathing losses; Classification of storage tanks; Design of liquid and gas storage tanks. Heat Exchange Equipment: Mechanical design and drawing of heat exchangers. Foundation and Supports: Foundation and supports for equipment/vessels, tall towers. 	8

(A) Text Books

S.	Authors / Name of Book / Publisher	Year of
No.		Publication
1	Bhattacharya, B. C., "Introduction to Chemical Equipment Design:	2017
	Mechanical Aspects," CBS Pub., Delhi.	
2	Joshi, M. V. and Mahajani, V. V., "Process Equipment Design," 5 th	2016
	Ed., Macmillan, Delhi.	

S.	Authors / Name of Book / Publisher	Year of
No.		Publication
1	Sinnott, R.K., "Coulson and Richardson's Chemical Engineering,"	2017
	Vol 1A, 7 th Ed., Butterworth Heinmann, New Delhi.	
2	Brownell, L. E. and Young, H. E., "Process Equipment Design," John	2004
	Wiley.	
3	Dawande, S. D., "Process Design of Equipment," 6th Ed., Central	2012
	Techno. Pub. Nagpur,	
4	IS: 2825-1969, "Code of Practice for Mechanical Design of Unfired	
	Pressure Vessels".	
5	IS: 803-1962, "Code of Practice for Design, Fabrication and Erection	
	of Mild Steel Cylindrical Welded Oil Storage Tanks".	
6	IS: 1239-1968, "Specification of Mild Steel Tubes".	
7	IS: 4503-1967, "Specifications for Shell and Tube Type Heat	
	Exchanger".	
8	IS Code for Pipe Line.	
9	ASTM and ASME codes.	

Course Title: Advanced Process Control

- 2. Contact Hours: L: 3 T: 1 P: 0
- 3. Credits: 4 Semester: VII
- 4. Pre-requisite: Nil.
- 5. Course Objective: Develop understanding about the advanced control methods such as multivariable control, digital control, artificial intelligence techniques used in process industries.
- 6. Course Outcomes: Upon completion of this course, the students will be able to:
 - i. Understand the multivariable control and interaction among control loops
 - ii. Understand and analyze the digital control systems
- iii. Understand the process identification techniques and model predictive control
- iv. Work in MATLAB and Simulink
- 7. Details of Course:

Unit	Contents	Contact
No.		Hours
1.	Review of conventional control systems. Ratio, selective and split range	8
	control, cascade control	
2.	Design of feed-forward control systems; Adaptive and Inferential Control;	8
	multivariable control; Control loop interaction and design of decouplers;	
3.	Discrete-time systems; Z-transforms; Stability analysis of discrete-time	8
	systems;	
4.	Design of digital feedback controller; deadbeat and Dahlin's controllers;	8
	Ringing and placement of poles; Process Identification and Adaptive	
	control.	
5.	Model predictive control; Artificial neural network and Fuzzy logic	8
	control. LTI models in MATLAB and Simulink.	

(A) Text Books

S.No.	Authors / Name of Book / Publisher	Year of Publication
1	Stephanopoulos, G., "Chemical Process Control", PHI, New Delhi.	2015

S.No.	Authors / Name of Book / Publisher	Year of
		Publication
1	Coughanowr, D. R., LeBlanc, S.E., "Process Systems Analysis and	2009
	Control", 3 rd Ed., McGraw Hill.	
2	Bequette, B.W., "Process Control - Modeling, Design and Simulation,"	2003
	Pretice Hall	
3	Seborg, D.E., Edgar, T.F., Mellichamp, D.A., Doyle III, F.A., "Process	2016
	Dynamics and Control," 4 th Ed., Wiley.	
4	Astrom, K. J. and Wittenmark, B., "Computer Controlled Systems:	2012
	Theory and Design", 3 rd Ed., Prentice Hall.	

SEMESTER – VII Program Elective – III

1. Subject Code: 22CHT927 Course Title: Polymer Science and Technology

- 2. Contact Hours: L: 3 T: 0 P: 0
- 3. Credits: 3 Semester: VII
- 4. Pre-requisite: Nil.
- 5. Objective: To understand various fundamental concepts of polymers and related phenomena.
- 6. Course Outcomes: Upon completion of this course, students will be able to:
 - i. Understand the basic concept of monomer, polymer and repeating units and their properties
 - ii. Understand the basic concepts of degree of polymerization
- iii. Understand in detail about the chemistry of polymers and the possible chemical modification
- iv. Understand the physical and chemical characterization of raw materials
- 7. Details of Course:

Unit	Contents	Contact
No.		Hours
1	Chemistry of Polymerization Reactions: Functionality, polymerization	12
	reactions, polycondensation, addition free radical and chain	
	polymerization. Co-polymerisation, block and graft polymerizations,	
	stereospecific polymerization.	
2	Polymerization Kinetics: Kinetics of radical, chain and ionic	10
	polymerization and co-polymerization systems.	
3	Molecular Weight Estimation: Average molecular weight: number	6
	average and weight average. Theoretical distributions, methods for the	
	estimation of molecular weight.	
4	Polymerization Processes: Bulk, solution, emulsion and suspension	6
	polymerization. Thermoplastic composites, fibre reinforcement fillers,	
	surface treatment reinforced thermoset composites - Resins, Fibres,	
	additives, fabrication methods.	
5	Rheology: Simple Rheological response, simple linear viscoelastic	6
	models - Maxwell, Voigt, material response time, temperature	
	dependence of viscosity, Rheological studies.	

(A) Text Books

S.	Authors / Name of Book / Publisher	Year of
No.		Publication
1.	Billmayer, F.W., JR., "Textbook of Polymer Science", John Wiley and	1994
	Sons.	
2.	Fried, J. R., "Polymer Science and Technology", PHI.	2005

S.	Authors / Name of Book / Publisher	Year of
No.		Publication
1.	Schmidt, A. K. and Marlies, G. A., "High Polymers - Theory and	1948
	Practice", McGraw Hill.	
2.	McKelvey, J. M., "Polymer Processing," John Wiley.	1962
3.	Rodringuez, "Principles of Polymer Systems", Tata McGraw Hill.	1970

Course Title: Process Integration

- 2. Contact Hours: L: 3 T: 0 P: 0
- 3. Credits: 3 Semester: VII
- 4. Pre-requisite: Nil.
- 5. Course Objective: To understand the energy and mass targets in design of processes.
- 6. Course Outcomes: Upon completion of this course, the students will be able to:
 - i. Understand of the fundamentals of process integration.
 - ii. Perform pinch analysis.
 - iii. Analyze and design heat exchanger networks.
 - iv. Minimize the water consumption and waste generation.

7. Details of Course:

Unit	Contents	Contact
No.		Hours
1.	Introduction: Process integration, Role of thermodynamics in process	6
	design, Concept of pinch technology and its application.	
2.	Heat Exchanger Networks: Heat exchanger networks analysis, Simple	16
	design for maximum energy recovery, Loop Breaking & Path Relaxation,	
	Targeting of energy, area, number of units and cost, Trading off energy	
	against capital.	
3.	Network Integration: Super targeting, maximum energy recovery	8
	(MER), Network for multiple utilities and multiple pinches, Grand	
	Composite curve (GCC).	
4.	Mass Integration: Distillation sequences.	10
	Heat and Power Integration: Columns, Evaporators, Dryers, and	
	reactors.	
	Case studies: Waste and wastewater minimization, Flue gas emission	
	targeting.	

(A) Text Books

S.	Authors / Name of Book / Publisher	Year of
No.		Publication
1	Linnhoff, D.W., User Guide on Process Integration for the Efficient	1994
	Use of Energy, Institution of Chemical Engineers.	
2	Smith, R., Chemical Process Design and Integration, John Wiley	2005
	&Sons.	

S.	Authors / Name of Book / Publisher	Year of
No.		Publication
1	Shenoy, V. U., Heat Exchanger network synthesis, Gulf Publishing.	1995
2	Kumar, A., Chemical Process Synthesis and Engineering	1982
	Design, Vol. Tata McGraw Hill.	

Course Title: Optimization of Chemical Processes

- 2. Contact Hours: L:3 T:0 P:0
- 3. Credits: 3 Semester: VII
- 4. Pre-requisite: Nil.

5. Course Objective: To study and apply optimization techniques in the chemical process industry.

6. Course Outcomes: Upon completion of this course, the students will be able to:

- i. Formulate the objective functions for constrained and unconstrained optimization problems
- ii. Use different optimization strategies
- iii. Use of different optimization techniques for problem solving
- iv. Solve transportation problems

7. Course Details:

Unit No	Contents	Contact Hours
1.	Problem formulation for the optimization, Basic concept of optimization.	8
	Unconstrained Single Variable Optimization: Newton, Quasi-	
	Newton methods, polynomial approximation methods.	
2.	Unconstrained Multivariable Optimization: Direct search method,	8
	conjugate search method, steepest descent method, conjugate	
	gradient method, Newton's method	
3.	Linear Programming: Formulation of LP problem, graphicalsolution	8
	of LP problem, simplex method, duality in LinearProgramming, two-	
	phase method.	
4.	Non-linear Programming with Constraints: Necessary and	8
	sufficiency conditions for a local extremum, Quadratic programming,	
	Successive linear programming, successive quadratic programming,	
	Penalty and Barrier method, Generalized reduced gradient (GRG)	
	method. Genetic Algorithm, MILP.	
5.	Introduction to Transportation Problems, Solving Various types	8
	of Transportation Problems, Assignment Problems, Project	
	Management, Critical Path Analysis, PERT.	
	Applications of optimization in Chemical Engineering.	

(A) Text Books

S.No.	Authors / Name of Book / Publisher	Year of
		Publication
1	Edgar, T.F., Himmelblau, D. M., Lasdon, L. S., "Optimization of	2001
	Chemical Process", 2 nd Ed., McGraw-Hill.	
2	Rao, S. S., "Optimisation Techniques", Wiley Eastern, New Delhi.	1985

S.No.	Authors / Name of Book / Publisher	Year of
		Publication
1	Godfrey, C.O. and Babu, B.V., "New Optimization Techniques in	2004
	Engineering", Springer-Verlag, Germany.	
2	Beveridge, G. S. and Schechter, R. S., "Optimization Theory and	1970
	Practice", McGraw- Hill, New York.	
3	Reklaitis, G.V., Ravindran, A. and Ragsdell, K. M., "Engineering	1983
	Optimization- Methods and Applications", John Wiley, New York.	
4	Taha, S.M., "Operations Research, an introduction", 6 th Ed.,	1997
	Prentice Hall.	