

I Semester:

S. No.	Course Code	Course Title	Category	Туре	Credit	L	Т	P
1.	22CET101	Engineering Drawing and Sketching	PC	Theory	2	1	0	2
2.	22CYT101	Engineering Chemistry	PC	Theory	3	3	0	0
3.	22HST101	Basic Economics	PC	Theory	2	2	0	0
4.	22HST102	English Communication Skills (Basic)	PC	Theory	2	2	0	0
5.	22MAT101	Mathematics I	PC	Theory	4	3	1	0
6.	22MET101	Introduction to Mechanical Systems	PC	Theory	2	2	0	0
7.	22CHT101	Introduction to Chemical Engineering	PC	Theory	3	3	0	0
8.	22CHT102	Chemical Engineering Thermodynamics-I	PC	Theory	4	3	1	0
9.	22CYP102	Engineering Chemistry Lab	PC	Lab	1	0	0	2
10.	22HSP104	Communication Skills lab (Basic)	PC	Lab	1	0	0	2
11.	22MEP102	Product Realization through Manufacturing	PC	Lab	1	0	0	2
Total				25				

SEMESTER – I

1. Subject Code: 22CHT101 Course Title: Introduction to Chemical Engineering

2. Contact Hours: L:3 T:0 P:03. Credits: 3 Semester: I

4. Pre-requisite: Nil.

- 5. Objective: To introduce the basic features and concepts of Chemical Engineering to the students.
- 6. Course Outcomes: Upon completion of this course, the students will be able to:
 - i. Understanding the chemical engineering and its future prospects
 - ii. To acquire knowledge of chemical process industries
 - iii. To acquire knowledge of basic principles of chemical engineering
 - iv. Knowledge of new developments in chemical engineering and career prospects

7. Details of Course:

Unit	Contents		
No.		Hours	
1.	Introduction: Definition of chemical engineering, historical perspective	8	
	and contribution; job description and attributes of a chemical engineer,		
	chemical engineering and its seamless integration with other sciences and		
	engineering disciplines; Societal needs and role of chemical engineer for		
	society development; Economic scale of production; Waste utilization		
	and recycle, sustainable technology; Employment opportunities,		
	knowledge resources; Frontiers & future roadmap; Challenges of		
	chemical engineering practice.		
2.	Chemical Process Industries: Framework of chemical industry and its	8	
	classification, Evolution of chemical industries,		
	Technological developments in major challenges; Chemical industries		
	structure and segments of chemical industry, raw material and production		
	pattern; Petroleum, petrochemical and fertilizer industry integration;		
	Cleaner and greener technologies.		
3.	Basic Principles of Chemical Engineering: Basic principles of chemical	8	
	processes, unit processes and unit operations and various routes to		
	produce chemicals; Material and Energy balances; Basic concept of mass,		
	energy, and momentum transport; Equilibrium and rate-based processes.		
4.	Reaction engineering and reactors; Measuring instruments, automation,	8	
	and control; Concept of equipment design, modelling and simulation.		
5.	Process Engineering Design Software (Aspen Plus, Hysys, Matlab, etc.),	8	
	Engineering computation using Microsoft Excel, Process Flow and		
	Instrumentation Diagram, Important developments and milestones in		
	chemical engineering, R&D in chemical engineering; Recent advances in		
	Chemical Engineering		

8. Books:

(A) Text Books

S.No.	Authors / Name of Book / Publisher	Year of
		Publication
1	Nnaji, U., "Introduction to Chemical Engineering: For Chemical	2019
	Engineers and Students", Wiley.	
2	Solen, K.A. and Harb, J.N., "Introduction to Chemical Engineering	2011
	Tools for Today and Tomorrow", 5 th edition, John-Wiley.	
3	Denn, M.M., "Chemical Engineering: An Introduction", Cambridge	2012
	University Press.	

(B) Reference Books

S.No.	Authors / Name of Book / Publisher	Year of
		Publication
1	Pushpavanam, S., "Introduction to Chemical Engineering", PHI	2012
	Learning Pvt. Ltd.	
2	Ghosal, S.K., Sanyal, S.K., Datta, S., "Introduction to Chemical	1997
	Engineering", Tata McGraw Hill.	
3	Himmelblau D.M. and Riggs J.B., "Basic Principles and Calculations	2014
	in Chemical Engineering", 8 th Edition, PHI.	
4	Austin, G. T., "Shreve's Chemical Process Industries", 5 th Edition,	1984
	McGraw-Hill, Company.	

1. Subject Code: 22CHT102 Course Title: Chemical Engineering Thermodynamics-I

2. Contact Hours: L:3 T:1 P:03. Credits: 4 Semester: I

4. Pre-requisite: Nil.

- 5. Objective: To learn the principles of work and energy and understand the laws of thermodynamics to apply in industries.
- 6. Course Outcomes: Upon completion of this course, the students will be able to:
 - i. To understand the basic concepts and first law of thermodynamics
 - ii. To understand the PVT behaviour of fluids
 - iii. To understand the heat effects
 - iv. To understand the second law of thermodynamics
 - v. To understand the concepts of statistical thermodynamics

7. Details of Course:

Unit	Contents	Contact
No.		Hours
1.	Introduction: Definitions and Concepts: System, Surroundings, Property,	8
	Energy, Work, Thermodynamic equilibrium, stability of equilibrium	
	states.	
	Zeroth Law of Thermodynamics: Perfect gas scale.	
	First Law of Thermodynamics: First law of Thermodynamics and Its	
	Applications, First law analysis of processes, Control mass and control	
	volume analysis, Steady state, and Transient state flow processes.	
2.	Volumetric Properties of Pure Fluids: PVT behavior of pure	8
	substances, virial equation and its applications, cubic equations of state,	
	generalized correlations for gases and liquids.	
3.	Heat Effects: Sensible heat effects, heat effects accompanying phase	8
	changes of pure substances, standard heats of reaction, formation and	
	combustion, effect of temperature on the standard heat of reaction.	
4.	Second law of Thermodynamics: Limitation of First Law, Kelvin-	8
	Planck and Clausius Statements, Reversible and Irreversible Processes,	
	Carnot cycle, Entropy, Second Law analysis of a control volume. Exergy.	
5.	Basic Concepts & Application of Statistical Thermodynamics: Need	8
	of statistical thermodynamics, Macrostates and microstates, Degenerate	
	energy levels, Bose-Einstein statistics, Fermi-Dirac statistics, Entropy,	
	Ideal gas, Maxwell speed distribution, Einstein model of solid, Debye	
	model of solid	

8. Books:

(A) Text Books

S.No.	Authors / Name of Book / Publisher	Year of	
		Publication	
1	Smith, J. M., Van Ness, H. C. and Abbott, M. M., "Introduction to	2019	
	Chemical Engineering Thermodynamics", 8 th Ed., McGraw-Hill.		
2	Rao, Y. V. C., "An Introduction to Thermodynamics," University Press.	2004	

(B) Reference Books

S.No.	Authors / Name of Book / Publisher	Year of	
		Publication	
1	Cengel, Y.A., "Thermodynamics: An Engineering Approach," 9 th	2019	
	Ed., McGraw-Hill.		
2	Nag, P.K., "Engineering Thermodynamics", 6 th Ed., McGraw-Hill	2017	