

II Semester:

S. No.	Course	Course Title	Catagony	Type	Credit	т	т	D
	Code	Course The	Category	Type	Creuit	L	I	Γ
1.	22CET102	Environmental Science	PC	Theory	2	2	0	0
2.	22CST101	Programming with Python	PC	Theory	2	2	0	0
3.	22EET101	Basic Electrical and Electronics Engg	PC	Theory	3	3	0	0
4.	22MAT102	Mathematics II	PC	Theory	4	3	1	0
5.	22PHT101	Classical Physics	PC	Theory	3	3	0	0
6.	22CHT103	Chemical Process Calculations	PC	Theory	4	3	1	0
7.	22CHT104	Process Instrumentation	PC	Theory	3	3	0	0
8.	22CSP102	Programming with Python Lab	PC	Lab	1	0	0	2
9.	22ECP101	Electronics Engineering Lab	PC	Lab	1	0	0	2
10.	22EEP102	Electrical Engineering Lab	PC	Lab	1	0	0	2
11.	22PHP103	Classical Physics Lab	PC	Lab	1	0	0	2
12.	ICP101	CREATIVE ARTS / SPORTS / NSS			1			
13.	ICP102	DISCIPLINE			1			
		Total			27			

SEMESTER – II

1. Subject Code: 22CHT103

Course Title: Chemical Process Calculations

- 2. Contact Hours: L:3 T:1 P:0
- 3. Credits: 4 Semester: II
- 4. Pre-requisite: Nil.
- 5. Objective: To introduce to the fundamental principles of chemical process analysis.
- 6. Course Outcomes: Upon completion of this course, the students will be able to:
 - i. Correlate between different Unit systems and their conversions for various process variables.
 - ii. Learn how to perform materials balance in any chemical processes with or without chemical reactions.
 - iii. Apply the gas laws to solve problems related to ideal gases and mixtures.
 - iv. Apply the energy balance to solve particular problems with and without chemical reactions
 - v. Solve de-coupled and coupled equations of mass and energy balance, numerically and computationally.

7. Details of Course:

Unit	Contents		
No.		Hours	
1.	Introduction to Chemical Engineering Calculations: Conversion of	10	
	Units, dimensional consistency and data analysis, significant figures,		
	precision and accuracy, concepts of molarity, molality, normality, ppm,		
	weight fraction, mole fraction and volume fraction, density and specific		
	gravity, process variables and principles of stoichiometry.		
2.	Materials balance with and without chemical reactions: Flowchart,	10	
	mole and mass balance for multi-component systems under: steady and		
	unsteady state, single-phase and multiphase, material balances in		
	processes including recycle, bypass and purge, Steady state material		
	balances for reactions: species and elemental balances, combustion		
	reactions, concept of limiting, excess reactants, fractional conversion and		
	percentage of conversion, yield, ultimate and proximate analysis of fuels,		
	excess air, air-fuel ratio calculations.		
3.	Thermodynamics of Multi-phase System: Vapor-liquid equilibrium:	10	
	Ideal and real gas, equation of state, Bubble point, dew point calculations,		
	Phase diagram, Gibbs phase rule, Antoine equation, phase equilibria of		
	vapour-liquid, solid-liquid and immiscible liquid-liquid systems.		
4.	Energy Balance with and without Chemical Reactions: De-Coupled	10	
	and coupled mass and energy balances, calculation of enthalpy changes,		
	steady state mass and energy balance with and without reactions, heats of		
	solution and mixing, Use of Psychometric chart, and steam table,		
	thermochemistry, Hess's law of summation- heat of formation, Hess's		
	Law and heats of combustion, Unsteady state material and energy		
	balances, isothermal and adiabatic processes, Numerical and computation		
	approach to solve problems with simultaneous mass and energy balance.		

8. Books:

(A) Text Books

S.No.	Authors / Name of Book / Publisher	Year of		
		Publication		
1	Himmelblau, D., Riggs, J., "Basic Principles and Calculations in	2012		
	Chemical Engineering", 8 th Ed., Pearson.			
2	Hougen, O.A, Watson, K.M and Ragatz R.A, "Chemical Process	2004		
	Principles: Part .1 (Chemical Process Principles: Material and Energy			
	Balances)", 2 nd Ed., CBS			

(B) Reference Books

S.No.	Authors / Name of Book / Publisher	Year of
		Publication
1	Bhatt B.I, and Vora S.M, "Stoichiometry", 4 th Ed., McGraw-Hill.	2004
2	Felder, R.M., Rousseau, R.W., and Bullard, L.G., "Elementary	2016
	Principles of Chemical Processes", 4 th Ed., John Wiley and Sons.	
3	Narayanan, K.V., and Lakshmikutty, B., "Stoichiometry & Process	2016
	Calculations", 2 nd Ed., Prentice Hall Publishing.	
4	Chopey, N., Hicks, T., "Handbook of Chemical Engineering	2012
	Calculations", 4 th Ed., McGraw-Hill Education.	

1. Subject Code: 22CHT104

Course Title: Process Instrumentation

- 2. Contact Hours: L:3 T:0 P:0
- 3. Credits: 3 Semester: II
- 4. Pre-requisite: Nil.
- 5. Objective: To study various types of instruments in terms of fundamental concepts, functional elements, calibration, and characteristics.
- 6. Course Outcomes: Upon completion of this course, the students will be able to:
 - i. To understand scientific concepts, principles, and theories appropriate to instrumentation.
 - ii. Students developed an understanding of various process instruments, control valves, pressure measurement, temperature measurement, flow measurement devices.
 - iii. Students gained understanding of the performance criteria of instruments (range: precision, accuracy, sensitivity and range ability).
 - iv. To understand scientific concepts, principles, and theories appropriate to instrumentation.
 - v. Students developed an understanding of various process instruments, control valves, pressure measurement, temperature measurement, flow measurement devices.

7. Details of Course:

Unit	Contents				
No.		Hours			
1.	Introduction: Application of instrument systems, functional elements of				
	a measurement system, classification of instruments, standards and				
	calibration, instrument symbols & tag numbering system.				
2.	Temperature Measurement: Temperature scales, temperature	4			
	measuring instruments, liquid in glass thermometer, bimetallic				
	thermometer, resistance temperature detectors (RTD), thermocouples,				
	pyrometry.				
3.	Pressure Measurement: Measurement of moderate pressure, high	3			
	pressure and low pressure (vacuum), calibration and standardization.				
4.	Flow Measurement: Positive displacement meters, variable head meters,	5			
	variable area meters (rotameters), Weirs and notches, pitot tube,				
	electromagnetic flow meter, hot wire anemometer, ultrasonic flow meters,				
	laser Doppler anemometer.				
5.	Acoustics Measurement: Characteristics of sound, Sound pressure,	3			
	Power and intensity levels, Loudness, Typical Sound Measuring systems				
	& Microphones.				
6.	Static characteristics of instruments: Liquid level, pH, viscosity,	6			
	conductivity, humidity, gas composition, and nuclear radiation, Errors and				
	uncertainties in performance parameters, propagation of uncertainties in				
	compound quantities, static performance parameters.				
7.	Dynamic characteristics of instruments: Formulation of system	5			

	equations, dynamic response, compensation, Transducers, building blocks	
	of an instrument, Control centre, Instrumentation diagram, online	
	instrumentation in modern plants.	
8.	Control Valves: Valve terminology, Valve capacity, Valve rangeability,	6
	Valve type based on body Design: Globe bodies, Angle, Needle, Ball,	
	Eccentric rotating, Plug, Butterfly, Diaphragm, Pinch, Drag flow	
	characteristic, Trim design, Mechanical feature, Actuator, Pneumatic	
	types, Electric types, Electro-hydraulic types. Positioner-Pneumatic,	
	Electro pneumatic, Positioner features & accessories, Control Valve	
	Accessories-Testing procedure of control valve: CV and Rangeability	
	(Valve sizing- initial level), Pressure Relieving Devices: Relief valve,	
	Safety valves and Rupture discs.	
9.	Signal Converting Elements: Pneumatic to electrical convertors, Electric	4
	to Pneumatic convertors, Voltage to Current convertor, Current to	
	Voltage convertor, Frequency to voltage & voltage to Frequency	
	convertor, Transmitter and Transducer signals.	

8. Books:

(A) Text Books

S. No.	Authors / Name of Book / Publisher	Year of
		Publication
1	Eckman, D. P., "Industrial Instrumentation," Wiley Eastern	2004
2	Nakra, B.C. and Chaudhry, K.K., "Instrumentation, Measurement and	2006
	Analysis," 2 nd Ed., Tata McGraw Hill, New Delhi.	

(B) Reference Books

S. No.	Authors / Name of Book / Publisher	Year of
		Publication
1	Patranabis, D., "Principles of Industrial Instrumentation," Tata McGraw	2007
	Hill, New Delhi.	
2	E.O. Doebelin, "Measurement Systems", McGraw Hill, 4 th Ed.	1990
3	Lipták, B.G., "Instrument Engineers' Handbook: Process Measurement	2003
	and Analysis," Vol 1 & 2, CRC Press.	