Chemical Engineering

Answer			
B	1	1 Laplace inverse of $s/(s^2+1)$ is	
		(A) sin(<i>t</i>)	(B) cos(<i>t</i>)
		(C) sin(2 <i>t</i>)	(D) cos(2 <i>t</i>)
А	2	A tank of cross-sectional area 1 m ² is having inlet and outlet flow rate of 60 LPM at steady state. It has a valve in outlet line with resistance of valve as R=0.01 m/LPM. The input flow rate suddenly changes to 90 LPM. The water level changes as per following equation (t is time in min),	
		(A) h = 0.9 – 0.3exp(-0.1t)	(B) h=0.6(1-exp(-0.1t))
		(C) h = 0.6 – 0.3exp(-0.1t)	(D) h=1-exp(-0.1t)
В	3 For estimating the liquid volume, the following equation can be used		ving equation can be used
		(A) Riedel equation	(B) Rackett equation
		(C) Virial equation	(D) Pitzer Correlation
В	4	For a mixture following modified Raoult's law for vapor-liquid equilibria, the activit coefficient of component i can be calculated by (x=mole fraction in liquid, y = mol fraction in vapor)	
		(A) $\gamma_i = x_i P_i^{sat} / \gamma_i P$	(B) $\gamma_i = \gamma_i P / x_i P_i^{sat}$
		(C) $\gamma_i = x_i P / \gamma_i P_i^{sat}$	$(D)\gamma_i = x_i P_i^{sat}$

B 5 How many moles of O2 are required for producing 10 moles of H₂O? (Consider C4H10 is in excess)
 (A) 6 5
 (B) 13

(A) 6.5	(B) 13
(C) 15	(D) 30

- $\begin{array}{ccc} \textbf{C} & \textbf{C} & \text{Critical speed rpm (N_c) of a ball mill is equal to} \\ & (A) \ 1/(D-d) & (B) \ 1/(D-d)^{1/2} & (C) \ 76.65/(D-d)^{1/2} & (D) \ 76.75/(D-d)^{1/2} \\ & \text{where D and d} & \text{are diameter of mill (ft) and balls (ft) respectively} \end{array}$
- A 7 Pressure drop in a packed bed for laminar flow is given by.....equation.
 (A) Kozney-Karman (B) Blake-Plummer (C) Leva's (D) Fanning friction factor
- C8Styrene-Butadiene rubber is commercially manufactured by
(A) Bulk polymerisation
(C) Suspension polymerization(B)Solution polymerisation
(D) Emulsion polymerization

B 9 For a gaseous phase reaction, rate of reaction is equal to K. CA . CB. If the volume of the reactor is suddenly reduced to 1/4th of its initial volume, then the rate of reaction compared to the original rate will be ______ times.

 A. 8
 B. 16
 C. 1/8
 D. 1/16

- **B** 10 Mark the system where heat transfer is given by forced convection
 - A) Chilling effect of cold wind on warm body
 - B) Fluid passing through the tubes of a condenser and other heat exchange equipment
 - C) Heat flow from a hot pavement to surrounding atmosphere
 - D) Heat exchange on the outside of cold and warm pipes