Organized by Electronics & ICT Academy

MNIT Jaipur http://www.mnit.ac.in/eict

VLSI/Embedded Systems & IoT: Smart Systems Design

26th June - 31st July 2020

http://academymnit.wordpress.com

Online Summer Training Programme

EICT Academy funded by

Ministry of Electronics and Information Technology Government of India

meity.gov.in/content/schemes-projects

Detailed Module Contents

Module 1: Digital System Design using Verilog hands on

Day 1 (2 hours)	Importance of Digital design in today's perspective ; Basics of Digital electronics; combinational circuits ;
	Basics of Verilog & its features, Modelling style of verilog
Day 2 (2 hours)	Verolog design for combinational circuits along with hands on learning – like Basic gates, Half adder, full adder,
	multiplexer and Testbench design using Verilog; 4 bit full adder
Day 3 (2 hours))	Verilog design for combinational circuits like Encoders, decoders, functional implementation
Day 4 (2 hours)	Basics of sequential circuits; Verilog coding for sequential circuits, like-flip flop, registers, counters etc
Day 5 (2 hours)	Verilog project, 4 bit serial full adder

Module 2: Mixed Signal IC Design using hands on learning

Day 1 (2 hours)	Importance of Mixed signal design in today's perspective; Basics of Sample and Hold circuits; types of sample and hold circuits
	Circuito
Day 2 (2 hours)	Digital to analog (D/A) converters; Types of D/A- Current-steering DAC – Binary weighted DAC, Thermometer DAC
Day 3 (2 hours))	Implementation (using available software) of D/A converters
Day 4 (2 hours)	Analog to Digital converters (A/D) ; Types of D/A- Flash ADC –Interpolative and Folding architectures. Successive
	Approximation ADC, Pipeline ADC. Over sampling ADC – Noise shaping, Sigma-Delta modulator.
Day 5 (2 hours)	Implementation (using available software) of A/D converters

Module 3: System Verilog for Verification

Day 1 (2 hours)	Basic Concept of Verification, Test Bench Design, System Verilog Introduction,
	Basic Features of System Verilog
Day 2 (2 hours)	System Verilog Data Types, Array concepts of System Verilog, Types of Array in System Verilog, Advance Faetures of Verification in System Verilog
Day 3 (2 hours))	Inter Process Communication, Methods of Interposes Communication,
	Randomization, Basic Of Verification Environment
Day 4 (2 hours)	Assertion of System Verilog, Coverage Basics
Day 5 (2 hours)	Coverage , Bins , Types of coverage, Cross Coverage, Examples

Module 4: FPGA and Synthesis Algorithms

Day 1 (2 hours)	PLD concepts, FPGA basic components, 7 series architecture, Synthesis & simulation, Implementation
Day 2 (2 hours)	Synthesis algorithms, High Level Synthesis, Architectural Synthesis, Scheduling and binding Concepts
Day 3 (2 hours))	Scheduling Algorithms, Constrain optimization, Resource Sharing and Binding
Day 4 (2 hours)	Logic Level Synthesis, Two-Level and Multi level Combinational Logic Optimization, Sequential Optimization
Day 5 (2 hours)	Data Path and Control path Design with Examples, Optimisation techniques

Module 5: Embedded systems & IoT

Day 1 (2 hours)	Embedded System basics, Embedded system architectures: state of the art and practice
Day 2 (2 hours)	Al for Embedded System, Intelligent Embedded Systems and application
Day 3 (2 hours))	Basics of IoT, IoT Communication Protocol, Hardware and Software, Networking with IoT
	Interoperability in IoT, Introduction to Arduino Programming:
Day 4 (2 hours)	Machine Learning Models: Classification and regression, Programming with Python
Day 5 (2 hours)	understanding and Implementation: Embedded System Hardware Emulation on Pc using Qemu, Raspberry Pi, ARM
	cortex ,esp32 Emulation On Windows or Linux System (with limited Functions) Implementation of Mqtt Client and broker
	server in virtual environment for IOT application

Module 5: Smart Electronics System Design

	Day 1 (2 hours)	Case Study 1: Smart healthcare System, Internet of medical things, Connected Health
	Day 2 (2 hours)	Case Study 2: Assistive Living, Intelligent Prosthetic Control System
	Day 3 (2 hours))	Case Study 3: security and Privacy issues for smart system
	Day 4 (2 hours)	Case Study 4: Smart City applications
	Day 5 (2 hours)	Future Direction of IoT