मालवीय राष्ट्रीय प्रौद्योगिकी संस्थान जयपुर

MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY, JAIPUR

MNIT DIARY No.

पंजिका संख्या/File No.....

कार्यालय टिप्पणी

NOTE SHEET

No.....

Dated:

CORRIGENDUM

This has the reference of our NIT No. <u>F5 (372)ST/MNIT/CEE/2016</u> dated <u>11.02.2017</u> for <u>HOT AIR OVEN</u> and <u>ELECTROCHEMICAL</u> <u>WORKSTATION (with Bi-potentiostat/ Galvanostat)</u>.

In continuation of this advertisement, the following amendments are hereby authorized as far as specification of the item is concerned:

For HOT OVEN

: The capacity of OVEN may be read as ca. **115 Liters** in place of 175 Liters.

For ELECTROCHEMICAL WORKSTATION

: See the Annexure attached for revised specifications

All other terms & conditions (including essentials) of our NIT will remain unchanged.

REGISTRAR

Page No.

T 4	
Instru	ment Name: ELECTROCHEMICAL WORKSTATION WITH BI-POTENTIOSTAT/GALVANOSTAT
	SPECIFICATIONS
REVISED	
٠	2-, 3-or 4-electrode configuration
٠	Floating (isolated from earth) or earth ground
٠	Potential scan range: ± 10 V or better
٠	Applied potential resolution: 0.02% of potential range or better
	Measured current range: 200mA or better (continuous)
٠	Peak current: 300mA or better
٠	Compliance Voltage: ± 10V or better
•	Compliance Current: ± 200mA or better
	Zero resistance ammeter
	Potentiostat rise time: ≤ 0.8 μs
	Potentiostat bandwidth: 1M Hz or better
	Applied potential resolution: 0.0015 % of potential range or better
	Applied potential accuracy: $\leq \pm 2 \text{ mV}$, $\leq \pm 0.02\%$ of scale
٠	Measured current range: ± 10 pA to ±0.25 A in 12 ranges
٠	Measured current resolution: 0.002 % of current range or better; min. 30 fA
٠	Current measurement accuracy: ±0.2% of range or better
٠	Galvanostat applied current range: 50nA onwards ±250mA or better
٠	Applied current accuracy: ±0.2% of current range or better
٠	Input impedance (Ref. Electrode Galvanostat): 1x1012 ohm
٠	Applied current resolution: 0.03% of applied current range or better
٠	Measured potential resolution: 0.002 % of measured range or better
	Input impedance: 1 T Ω or better
٠	Bandwidth: 10 MHz or better
٠	Input bias current: ≤ 20 pA
٠	IMP frequency: 0.1 µHz to 1 MHz or better
٠	iR compensation: Automaticro and manual
•	Multiplexer: 8 channel
	INTEGRATED TECHNIQUES
٠	Cyclic Voltammetry (CV)
٠	Linear Sweep Voltammetry (LSV) with stripping
٠	Tafel Plot (TAFEL), Linear Polarisation
٠	Chrono Amperometry (CA)
٠	Chrono Coulometry (CC)
٠	Bulk Electrolysis with Coulometry (BE)
٠	AC Impedance (IMP)
٠	Impedance – Time (IMPT)
٠	Impedance – Potential (IMPE)
٠	Chronopotentiometry (CP)
٠	Chronopotentiometry with Current Ramp (CPCR)
٠	Multi-Current Steps (ISTEP)
٠	Potentiometer Stripping Analysis (PSA)
٠	Open Circuit Potential – Time (OCPT)
٠	Galvanostat
٠	Limited version of CV simulator
•	Impedance Simulator

Impedance Simulator

- IR Compensation
- External Potential Input
- Auxiliary Signal Measurement Channel
- Amperometric i-t Curve (i-t)
- RDE/RRDE Control (0-10 V or better output)
- Electrochemical Noise Measurement (ECN)
- CV Simulation and fitting program
- Impedance Simulation and fitting program
- AC Impedance Plots
- Battery Charge/Discharge
- PV Studies
- Institute Spectro-electrochemical study
- Double & Triple pulse techniques
- Hydrodynamic Voltammetry

Bode : log Z vs log (freq.); Bode : Phase , vs log (freq.); Bode : log Z" & Z' vs log (freq.); Bode : log Y vs log (freq.); Nyquist ; Z" vs Z'; Admittance; Y" vs Y'; Warburg: Z" & Z' vs w1/2 w-angular frequency; Z' vs w Z"; Z' vs Z"/w; Cot (phase) vs w ½

SOFTWARE (LATEST WINDOWS BASED ACQUISITION S/W) FEATURES

- Software should have facility to record additional signal viz EQCM, bi-potentiostat etc. Import/export ASCII.
- Ready-to-use Vis & Generic interface for .Net applications should be included.
- Should have facility to display up to 4 plots simultaneously. Comparison with previous experiments should be possible while experiments are in progress.
- The software should support following basic electrochemical measurements:
 - ✤ Cyclic Voltammetry with scan rates from 10 µV/Sec to 200V/Sec,
 - * Sampled DC Voltammetry
 - * Taffel Plots
 - * Differential Pulse Voltammetry
 - * Square Wave Voltammetry
 - Electrochemical methods like Chrono Amperometry, Chrono-Coulometry & Chrono-Potentiometry.
- Software should be upgradable Lifetime Free of Charges
- Glassy Carbon electrode diameter should be 6mm required in 2 (no.) units.
- Essential requirement is 2A or more current booster.
- 2 KVA UPS with one hour back up should be considered as an optional accessary.